論文の概要: Graph Neural Networks at a Fraction
- arxiv url: http://arxiv.org/abs/2502.06136v2
- Date: Tue, 11 Feb 2025 06:30:25 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-02-12 14:09:44.616630
- Title: Graph Neural Networks at a Fraction
- Title(参考訳): フラクションにおけるグラフニューラルネットワーク
- Authors: Rucha Bhalchandra Joshi, Sagar Prakash Barad, Nidhi Tiwari, Subhankar Mishra,
- Abstract要約: 本稿では、四元数空間を利用してノード表現を計算するフレームワークである四元数メッセージパッシングニューラルネットワーク(QMPNN)を紹介する。
GNN や QMPNN のコンテキストにおける適用性を再定義する。
- 参考スコア(独自算出の注目度): 1.8175282137722093
- License:
- Abstract: Graph Neural Networks (GNNs) have emerged as powerful tools for learning representations of graph-structured data. In addition to real-valued GNNs, quaternion GNNs also perform well on tasks on graph-structured data. With the aim of reducing the energy footprint, we reduce the model size while maintaining accuracy comparable to that of the original-sized GNNs. This paper introduces Quaternion Message Passing Neural Networks (QMPNNs), a framework that leverages quaternion space to compute node representations. Our approach offers a generalizable method for incorporating quaternion representations into GNN architectures at one-fourth of the original parameter count. Furthermore, we present a novel perspective on Graph Lottery Tickets, redefining their applicability within the context of GNNs and QMPNNs. We specifically aim to find the initialization lottery from the subnetwork of the GNNs that can achieve comparable performance to the original GNN upon training. Thereby reducing the trainable model parameters even further. To validate the effectiveness of our proposed QMPNN framework and LTH for both GNNs and QMPNNs, we evaluate their performance on real-world datasets across three fundamental graph-based tasks: node classification, link prediction, and graph classification.
- Abstract(参考訳): グラフニューラルネットワーク(GNN)は、グラフ構造化データの表現を学習するための強力なツールとして登場した。
実数値のGNNに加えて、四元数GNNはグラフ構造化データのタスクでもうまく機能する。
エネルギーフットプリントの削減を目的として,原サイズのGNNに匹敵する精度を維持しながら,モデルサイズを小さくする。
本稿では、四元数空間を利用してノード表現を計算するフレームワークである四元数メッセージパッシングニューラルネットワーク(QMPNN)を紹介する。
提案手法は,元のパラメータの4分の1で,四元数表現をGNNアーキテクチャに組み込むための一般化可能な手法を提供する。
さらに,GNN や QMPNN のコンテキストにおける適用性を再定義し,グラフロッテティティケットの新たな視点を示す。
具体的には、トレーニング時に元のGNNに匹敵する性能が得られるGNNのサブネットワークから初期化宝くじを見つけることを目的としている。
これにより、トレーニング可能なモデルのパラメータをさらに削減できる。
提案したQMPNNフレームワークとLTHの有効性をGNNとQMPNNの両方で検証するため,ノード分類,リンク予測,グラフ分類という3つの基本的なグラフベースタスクにおける実世界のデータセットの性能を評価した。
関連論文リスト
- Graph Coordinates and Conventional Neural Networks -- An Alternative for
Graph Neural Networks [0.10923877073891444]
メッセージパッシングGNNの新たな代替手段として,Topology Coordinate Neural Network (TCNN) と Directional Virtual Coordinate Neural Network (DVCNN) を提案する。
TCNNとDVCNNは、メッセージパッシングGNNの競合や優れたパフォーマンスを達成する。
私たちの研究は、グラフベースの機械学習のためのテクニックのツールボックスを拡張します。
論文 参考訳(メタデータ) (2023-12-03T10:14:10Z) - GNN-Ensemble: Towards Random Decision Graph Neural Networks [3.7620848582312405]
グラフニューラルネットワーク(GNN)は、グラフ構造化データに広く応用されている。
GNNは、大量のテストデータに基づいて推論を行うために、限られた量のトレーニングデータから潜伏パターンを学習する必要がある。
本稿では、GNNのアンサンブル学習を一歩前進させ、精度、堅牢性、敵攻撃を改善した。
論文 参考訳(メタデータ) (2023-03-20T18:24:01Z) - Geodesic Graph Neural Network for Efficient Graph Representation
Learning [34.047527874184134]
我々はGeodesic GNN(GDGNN)と呼ばれる効率的なGNNフレームワークを提案する。
ラベル付けなしでノード間の条件付き関係をモデルに注入する。
ジオデシック表現を前提としたGDGNNは、通常のGNNよりもはるかにリッチな構造情報を持つノード、リンク、グラフ表現を生成することができる。
論文 参考訳(メタデータ) (2022-10-06T02:02:35Z) - A Unified Lottery Ticket Hypothesis for Graph Neural Networks [82.31087406264437]
本稿では,グラフ隣接行列とモデルの重み付けを同時に行う統一GNNスペーシフィケーション(UGS)フレームワークを提案する。
グラフ宝くじ(GLT)をコアサブデータセットとスパースサブネットワークのペアとして定義することにより、人気のある宝くじチケット仮説を初めてGNNsにさらに一般化します。
論文 参考訳(メタデータ) (2021-02-12T21:52:43Z) - Identity-aware Graph Neural Networks [63.6952975763946]
グラフニューラルネットワーク(ID-GNN)を1-WLテストよりも表現力の高いメッセージクラスを開発しています。
ID-GNNは、メッセージパッシング中にノードのIDを誘導的に考慮することにより、既存のGNNアーキテクチャを拡張します。
既存のGNNをID-GNNに変換すると、挑戦ノード、エッジ、グラフプロパティ予測タスクの平均40%の精度が向上することを示す。
論文 参考訳(メタデータ) (2021-01-25T18:59:01Z) - A Unified View on Graph Neural Networks as Graph Signal Denoising [49.980783124401555]
グラフニューラルネットワーク(GNN)は,グラフ構造化データの学習表現において顕著に普及している。
本研究では,代表的GNNモデル群における集約過程を,グラフ記述問題の解法とみなすことができることを数学的に確立する。
UGNNから派生した新しいGNNモデルADA-UGNNをインスタンス化し、ノード間の適応的滑らかさでグラフを処理する。
論文 参考訳(メタデータ) (2020-10-05T04:57:18Z) - The Surprising Power of Graph Neural Networks with Random Node
Initialization [54.4101931234922]
グラフニューラルネットワーク(GNN)は、関係データ上での表現学習に有効なモデルである。
標準 GNN はその表現力に制限があり、Weisfeiler-Leman グラフ同型(英語版)の能力以外の区別はできない。
本研究では,ランダムノード(RNI)を用いたGNNの表現力の解析を行う。
我々はこれらのモデルが普遍的であることを証明し、GNNが高次特性の計算に頼らない最初の結果である。
論文 参考訳(メタデータ) (2020-10-02T19:53:05Z) - Distance Encoding: Design Provably More Powerful Neural Networks for
Graph Representation Learning [63.97983530843762]
グラフニューラルネットワーク(GNN)はグラフ表現学習において大きな成功を収めている。
GNNは、実際には非常に異なるグラフ部分構造に対して同一の表現を生成する。
より強力なGNNは、最近高階試験を模倣して提案され、基礎となるグラフ構造を疎結合にできないため、非効率である。
本稿では,グラフ表現学習の新たなクラスとして距離分解(DE)を提案する。
論文 参考訳(メタデータ) (2020-08-31T23:15:40Z) - Eigen-GNN: A Graph Structure Preserving Plug-in for GNNs [95.63153473559865]
グラフニューラルネットワーク(GNN)は、グラフ上の新たな機械学習モデルである。
既存のGNNモデルの多くは浅く、本質的に機能中心である。
我々は,既存の浅いGNNがグラフ構造をよく保存できないことを経験的かつ解析的に示す。
本稿では,グラフ構造保存におけるGNNの能力を高めるプラグインモジュールであるEigen-GNNを提案する。
論文 参考訳(メタデータ) (2020-06-08T02:47:38Z) - Self-Enhanced GNN: Improving Graph Neural Networks Using Model Outputs [20.197085398581397]
グラフニューラルネットワーク(GNN)は最近、グラフベースのタスクにおける優れたパフォーマンスのために、多くの注目を集めている。
本稿では,既存のGNNモデルの出力を用いて,入力データの品質を向上させる自己強化型GNN(SEG)を提案する。
SEGは、GCN、GAT、SGCといったよく知られたGNNモデルのさまざまなデータセットのパフォーマンスを一貫して改善する。
論文 参考訳(メタデータ) (2020-02-18T12:27:16Z) - Generalization and Representational Limits of Graph Neural Networks [46.20253808402385]
ローカル情報に完全に依存するグラフニューラルネットワーク(GNN)では,いくつかの重要なグラフ特性を計算できないことを示す。
メッセージパッシングGNNに対する最初のデータ依存一般化境界を提供する。
私たちのバウンダリは、既存のVC次元ベースのGNN保証よりもはるかに厳格で、リカレントニューラルネットワークのRademacherバウンダリと同等です。
論文 参考訳(メタデータ) (2020-02-14T18:10:14Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。