論文の概要: When Data Manipulation Meets Attack Goals: An In-depth Survey of Attacks for VLMs
- arxiv url: http://arxiv.org/abs/2502.06390v2
- Date: Tue, 11 Feb 2025 04:42:24 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-02-12 14:07:55.173208
- Title: When Data Manipulation Meets Attack Goals: An In-depth Survey of Attacks for VLMs
- Title(参考訳): データ操作がアタック目標に遭遇する: VLMのアタックに関する詳細な調査
- Authors: Aobotao Dai, Xinyu Ma, Lei Chen, Songze Li, Lin Wang,
- Abstract要約: VLM(Vision-Language Models)に適した攻撃戦略を詳細に調査する。
我々はこれらの攻撃をその根底にある目的に基づいて分類する。
これらの脆弱性を軽減するために提案されている防衛機構について概説する。
- 参考スコア(独自算出の注目度): 15.74045364570382
- License:
- Abstract: Vision-Language Models (VLMs) have gained considerable prominence in recent years due to their remarkable capability to effectively integrate and process both textual and visual information. This integration has significantly enhanced performance across a diverse spectrum of applications, such as scene perception and robotics. However, the deployment of VLMs has also given rise to critical safety and security concerns, necessitating extensive research to assess the potential vulnerabilities these VLM systems may harbor. In this work, we present an in-depth survey of the attack strategies tailored for VLMs. We categorize these attacks based on their underlying objectives - namely jailbreak, camouflage, and exploitation - while also detailing the various methodologies employed for data manipulation of VLMs. Meanwhile, we outline corresponding defense mechanisms that have been proposed to mitigate these vulnerabilities. By discerning key connections and distinctions among the diverse types of attacks, we propose a compelling taxonomy for VLM attacks. Moreover, we summarize the evaluation metrics that comprehensively describe the characteristics and impact of different attacks on VLMs. Finally, we conclude with a discussion of promising future research directions that could further enhance the robustness and safety of VLMs, emphasizing the importance of ongoing exploration in this critical area of study. To facilitate community engagement, we maintain an up-to-date project page, accessible at: https://github.com/AobtDai/VLM_Attack_Paper_List.
- Abstract(参考訳): 近年、視覚言語モデル (VLM) は、テキスト情報と視覚情報の両方を効果的に統合し、処理する優れた能力により、大きな注目を集めている。
この統合により、シーン認識やロボティクスなど、さまざまなアプリケーションにおいて、パフォーマンスが大幅に向上した。
しかしながら、VLMの配備は重大な安全性とセキュリティ上の懸念を生じさせ、これらのVLMシステムが持つ潜在的な脆弱性を評価するために広範な研究を必要としている。
本稿では, VLM に適した攻撃戦略について, 詳細な調査を行う。
VLMのデータ操作に使用される様々な手法を詳述しながら,これらの攻撃の基本的な目的,すなわちジェイルブレイク,カモフラージュ,エクスプロイトに基づいて分類する。
一方、これらの脆弱性を軽減するために提案されている防衛機構について概説する。
様々な種類の攻撃の鍵となるつながりと区別を識別することにより,VLM攻撃に対する強力な分類法を提案する。
さらに、VLMに対する異なる攻撃の特性と影響を包括的に記述した評価指標を要約する。
最後に,VLMの堅牢性と安全性をさらに向上させる将来的な研究の方向性を議論し,この重要な研究領域における継続的な探索の重要性を強調した。
コミュニティのエンゲージメントを促進するため、私たちは、https://github.com/AobtDai/VLM_Attack_Paper_Listでアクセスできる最新のプロジェクトページを維持しています。
関連論文リスト
- Model Inversion Attacks: A Survey of Approaches and Countermeasures [59.986922963781]
近年、新しいタイプのプライバシ攻撃であるモデル反転攻撃(MIA)は、トレーニングのためのプライベートデータの機密性を抽出することを目的としている。
この重要性にもかかわらず、総合的な概要とMIAに関する深い洞察を提供する体系的な研究が欠如している。
本調査は、攻撃と防御の両方において、最新のMIA手法を要約することを目的としている。
論文 参考訳(メタデータ) (2024-11-15T08:09:28Z) - The VLLM Safety Paradox: Dual Ease in Jailbreak Attack and Defense [56.32083100401117]
本稿では,視覚大言語モデル (VLLM) がジェイルブレイク攻撃のリスクが高い理由を考察する。
既存の防御機構は、テキストバウンド・プルーデンスの問題に悩まされる。
ジェイルブレイクの2つの代表的な評価手法は、しばしばチャンス合意を示す。
論文 参考訳(メタデータ) (2024-11-13T07:57:19Z) - Benchmarking Vision Language Model Unlearning via Fictitious Facial Identity Dataset [94.13848736705575]
我々は、未学習アルゴリズムの有効性を頑健に評価するために設計された新しいVLMアンラーニングベンチマークであるFacial Identity Unlearning Benchmark (FIUBench)を紹介する。
情報ソースとその露出レベルを正確に制御する2段階評価パイプラインを適用した。
FIUBench 内の 4 つのベースライン VLM アンラーニングアルゴリズムの評価により,すべての手法がアンラーニング性能に制限されていることが明らかとなった。
論文 参考訳(メタデータ) (2024-11-05T23:26:10Z) - Jailbreaking and Mitigation of Vulnerabilities in Large Language Models [4.564507064383306]
大規模言語モデル(LLM)は、自然言語の理解と生成を前進させることで、人工知能を変革した。
これらの進歩にもかかわらず、LSMは、特に注射と脱獄攻撃を急ぐために、かなりの脆弱性を示してきた。
このレビューでは、これらの脆弱性についての研究状況を分析し、利用可能な防衛戦略を提示する。
論文 参考訳(メタデータ) (2024-10-20T00:00:56Z) - A Survey of Attacks on Large Vision-Language Models: Resources, Advances, and Future Trends [78.3201480023907]
LVLM(Large Vision-Language Models)は、多モーダルな理解と推論タスクにまたがる顕著な能力を示す。
LVLMの脆弱性は比較的過小評価されており、日々の使用において潜在的なセキュリティリスクを生じさせる。
本稿では,既存のLVLM攻撃の様々な形態について概説する。
論文 参考訳(メタデータ) (2024-07-10T06:57:58Z) - Breaking Down the Defenses: A Comparative Survey of Attacks on Large Language Models [18.624280305864804]
大規模言語モデル(LLM)は自然言語処理(NLP)分野の基盤となっている。
本稿では,LSMを標的とした様々な攻撃形態の包括的調査を行う。
モデルアウトプットを操作するための敵攻撃、モデルトレーニングに影響を与えるデータ中毒、データエクスプロイトのトレーニングに関連するプライバシー上の懸念などについて調べる。
論文 参考訳(メタデータ) (2024-03-03T04:46:21Z) - A Comprehensive Study of Jailbreak Attack versus Defense for Large Language Models [20.40158210837289]
Vicuna, LLama, GPT-3.5 Turboの3つの異なる言語モデルに適用した9つの攻撃手法と7つの防御手法について検討した。
以上の結果から,既存のホワイトボックス攻撃は普遍的手法に比べて性能が低く,入力に特別なトークンを含むと,攻撃成功の可能性に大きな影響を及ぼすことが明らかとなった。
論文 参考訳(メタデータ) (2024-02-21T01:26:39Z) - A Comprehensive Survey of Attack Techniques, Implementation, and Mitigation Strategies in Large Language Models [0.0]
この記事では、モデル自体に対する攻撃と、モデルアプリケーションに対する攻撃という2つの攻撃カテゴリについて説明する。
前者は専門知識、モデルデータへのアクセス、重要な実装時間が必要です。
後者は攻撃者にはよりアクセスしやすく、注目されている。
論文 参考訳(メタデータ) (2023-12-18T07:07:32Z) - Privacy in Large Language Models: Attacks, Defenses and Future Directions [84.73301039987128]
大規模言語モデル(LLM)を対象とした現在のプライバシ攻撃を分析し、敵の想定能力に応じて分類する。
本稿では、これらのプライバシー攻撃に対抗するために開発された防衛戦略について概説する。
論文 参考訳(メタデータ) (2023-10-16T13:23:54Z) - On Evaluating Adversarial Robustness of Large Vision-Language Models [64.66104342002882]
大規模視覚言語モデル(VLM)のロバスト性を,最も現実的で高リスクな環境で評価する。
特に,CLIP や BLIP などの事前学習モデルに対して,まず攻撃対象のサンプルを作成する。
これらのVLM上のブラックボックスクエリは、ターゲットの回避の効果をさらに向上させることができる。
論文 参考訳(メタデータ) (2023-05-26T13:49:44Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。