Image Intrinsic Scale Assessment: Bridging the Gap Between Quality and Resolution
- URL: http://arxiv.org/abs/2502.06476v1
- Date: Mon, 10 Feb 2025 13:54:55 GMT
- Title: Image Intrinsic Scale Assessment: Bridging the Gap Between Quality and Resolution
- Authors: Vlad Hosu, Lorenzo Agnolucci, Daisuke Iso, Dietmar Saupe,
- Abstract summary: We introduce the Image Intrinsic Scale (IIS), defined as the largest scale where an image exhibits its highest perceived quality.
We present the Image Intrinsic Scale Assessment (IISA) task, which involves subjectively measuring and predicting the IIS based on human judgments.
- Score: 4.896425819316727
- License:
- Abstract: Image Quality Assessment (IQA) measures and predicts perceived image quality by human observers. Although recent studies have highlighted the critical influence that variations in the scale of an image have on its perceived quality, this relationship has not been systematically quantified. To bridge this gap, we introduce the Image Intrinsic Scale (IIS), defined as the largest scale where an image exhibits its highest perceived quality. We also present the Image Intrinsic Scale Assessment (IISA) task, which involves subjectively measuring and predicting the IIS based on human judgments. We develop a subjective annotation methodology and create the IISA-DB dataset, comprising 785 image-IIS pairs annotated by experts in a rigorously controlled crowdsourcing study. Furthermore, we propose WIISA (Weak-labeling for Image Intrinsic Scale Assessment), a strategy that leverages how the IIS of an image varies with downscaling to generate weak labels. Experiments show that applying WIISA during the training of several IQA methods adapted for IISA consistently improves the performance compared to using only ground-truth labels. We will release the code, dataset, and pre-trained models upon acceptance.
Related papers
- Scale Contrastive Learning with Selective Attentions for Blind Image Quality Assessment [15.235786583920062]
Blind image quality assessment (BIQA) serves as a fundamental task in computer vision, yet it often fails to consistently align with human subjective perception.
Recent advances show that multi-scale evaluation strategies are promising due to their ability to replicate the hierarchical structure of human vision.
This paper addresses two primary challenges: the significant redundancy of information across different scales, and the confusion caused by combining features from these scales.
arXiv Detail & Related papers (2024-11-13T20:17:30Z) - ExIQA: Explainable Image Quality Assessment Using Distortion Attributes [0.3683202928838613]
We propose an explainable approach for distortion identification based on attribute learning.
We generate a dataset consisting of 100,000 images for efficient training.
Our approach achieves state-of-the-art (SOTA) performance across multiple datasets in both PLCC and SRCC metrics.
arXiv Detail & Related papers (2024-09-10T20:28:14Z) - Sliced Maximal Information Coefficient: A Training-Free Approach for Image Quality Assessment Enhancement [12.628718661568048]
We aim to explore a generalized human visual attention estimation strategy to mimic the process of human quality rating.
In particular, we model human attention generation by measuring the statistical dependency between the degraded image and the reference image.
Experimental results verify the performance of existing IQA models can be consistently improved when our attention module is incorporated.
arXiv Detail & Related papers (2024-08-19T11:55:32Z) - Descriptive Image Quality Assessment in the Wild [25.503311093471076]
VLM-based Image Quality Assessment (IQA) seeks to describe image quality linguistically to align with human expression.
We introduce Depicted image Quality Assessment in the Wild (DepictQA-Wild)
Our method includes a multi-functional IQA task paradigm that encompasses both assessment and comparison tasks, brief and detailed responses, full-reference and non-reference scenarios.
arXiv Detail & Related papers (2024-05-29T07:49:15Z) - Opinion-Unaware Blind Image Quality Assessment using Multi-Scale Deep Feature Statistics [54.08757792080732]
We propose integrating deep features from pre-trained visual models with a statistical analysis model to achieve opinion-unaware BIQA (OU-BIQA)
Our proposed model exhibits superior consistency with human visual perception compared to state-of-the-art BIQA models.
arXiv Detail & Related papers (2024-05-29T06:09:34Z) - Multi-Modal Prompt Learning on Blind Image Quality Assessment [65.0676908930946]
Image Quality Assessment (IQA) models benefit significantly from semantic information, which allows them to treat different types of objects distinctly.
Traditional methods, hindered by a lack of sufficiently annotated data, have employed the CLIP image-text pretraining model as their backbone to gain semantic awareness.
Recent approaches have attempted to address this mismatch using prompt technology, but these solutions have shortcomings.
This paper introduces an innovative multi-modal prompt-based methodology for IQA.
arXiv Detail & Related papers (2024-04-23T11:45:32Z) - Pairwise Comparisons Are All You Need [22.798716660911833]
Blind image quality assessment (BIQA) approaches often fall short in real-world scenarios due to their reliance on a generic quality standard applied uniformly across diverse images.
This paper introduces PICNIQ, a pairwise comparison framework designed to bypass the limitations of conventional BIQA.
By employing psychometric scaling algorithms, PICNIQ transforms pairwise comparisons into just-objectionable-difference (JOD) quality scores, offering a granular and interpretable measure of image quality.
arXiv Detail & Related papers (2024-03-13T23:43:36Z) - Introspective Deep Metric Learning [91.47907685364036]
We propose an introspective deep metric learning framework for uncertainty-aware comparisons of images.
The proposed IDML framework improves the performance of deep metric learning through uncertainty modeling.
arXiv Detail & Related papers (2023-09-11T16:21:13Z) - Exploring CLIP for Assessing the Look and Feel of Images [87.97623543523858]
We introduce Contrastive Language-Image Pre-training (CLIP) models for assessing both the quality perception (look) and abstract perception (feel) of images in a zero-shot manner.
Our results show that CLIP captures meaningful priors that generalize well to different perceptual assessments.
arXiv Detail & Related papers (2022-07-25T17:58:16Z) - Image Quality Assessment using Contrastive Learning [50.265638572116984]
We train a deep Convolutional Neural Network (CNN) using a contrastive pairwise objective to solve the auxiliary problem.
We show through extensive experiments that CONTRIQUE achieves competitive performance when compared to state-of-the-art NR image quality models.
Our results suggest that powerful quality representations with perceptual relevance can be obtained without requiring large labeled subjective image quality datasets.
arXiv Detail & Related papers (2021-10-25T21:01:00Z) - Learning Conditional Knowledge Distillation for Degraded-Reference Image
Quality Assessment [157.1292674649519]
We propose a practical solution named degraded-reference IQA (DR-IQA)
DR-IQA exploits the inputs of IR models, degraded images, as references.
Our results can even be close to the performance of full-reference settings.
arXiv Detail & Related papers (2021-08-18T02:35:08Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.