論文の概要: Intelligent Sensing-to-Action for Robust Autonomy at the Edge: Opportunities and Challenges
- arxiv url: http://arxiv.org/abs/2502.02692v1
- Date: Tue, 04 Feb 2025 20:13:58 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-02-06 14:27:55.066546
- Title: Intelligent Sensing-to-Action for Robust Autonomy at the Edge: Opportunities and Challenges
- Title(参考訳): エッジにおけるロバスト・オートノミーのためのインテリジェント・センシング・ツー・アクション--可能性と課題
- Authors: Amit Ranjan Trivedi, Sina Tayebati, Hemant Kumawat, Nastaran Darabi, Divake Kumar, Adarsh Kumar Kosta, Yeshwanth Venkatesha, Dinithi Jayasuriya, Nethmi Jayasinghe, Priyadarshini Panda, Saibal Mukhopadhyay, Kaushik Roy,
- Abstract要約: ロボット、スマートシティ、自動運転車における自律エッジコンピューティングは、センサー、処理、アクチュエーターのシームレスな統合に依存している。
中心となるのは、センサー入力と計算モデルとを反復的に整列させて適応制御戦略を駆動するセンサー・ツー・アクション・ループである。
本稿では、能動的、文脈対応型センシング・ツー・アクションとアクション・トゥ・センシングの適応によって効率が向上する方法について論じる。
- 参考スコア(独自算出の注目度): 19.390215975410406
- License:
- Abstract: Autonomous edge computing in robotics, smart cities, and autonomous vehicles relies on the seamless integration of sensing, processing, and actuation for real-time decision-making in dynamic environments. At its core is the sensing-to-action loop, which iteratively aligns sensor inputs with computational models to drive adaptive control strategies. These loops can adapt to hyper-local conditions, enhancing resource efficiency and responsiveness, but also face challenges such as resource constraints, synchronization delays in multi-modal data fusion, and the risk of cascading errors in feedback loops. This article explores how proactive, context-aware sensing-to-action and action-to-sensing adaptations can enhance efficiency by dynamically adjusting sensing and computation based on task demands, such as sensing a very limited part of the environment and predicting the rest. By guiding sensing through control actions, action-to-sensing pathways can improve task relevance and resource use, but they also require robust monitoring to prevent cascading errors and maintain reliability. Multi-agent sensing-action loops further extend these capabilities through coordinated sensing and actions across distributed agents, optimizing resource use via collaboration. Additionally, neuromorphic computing, inspired by biological systems, provides an efficient framework for spike-based, event-driven processing that conserves energy, reduces latency, and supports hierarchical control--making it ideal for multi-agent optimization. This article highlights the importance of end-to-end co-design strategies that align algorithmic models with hardware and environmental dynamics and improve cross-layer interdependencies to improve throughput, precision, and adaptability for energy-efficient edge autonomy in complex environments.
- Abstract(参考訳): ロボット、スマートシティ、自動運転車における自律エッジコンピューティングは、動的環境におけるリアルタイムな意思決定のためのセンシング、処理、アクチュエーターのシームレスな統合に依存している。
中心となるのは、センサー入力と計算モデルとを反復的に整列させて適応制御戦略を駆動するセンサー・ツー・アクション・ループである。
これらのループは、超局所的な条件に適応し、リソース効率と応答性を向上させるだけでなく、リソース制約、マルチモーダルデータ融合における同期遅延、フィードバックループにおけるカスケードエラーのリスクといった課題にも直面する。
本稿では,環境の極めて限られた部分を感知したり,残りを予測したりといったタスク要求に基づいて,センサや計算を動的に調整することで,能動的かつコンテキスト対応のセンシング・ツー・アクションやアクション・トゥ・センシングの適応が効率を向上する方法について考察する。
制御動作を通じてセンサを誘導することにより、アクション・トゥ・センシング・パスはタスクの関連性とリソース使用を改善することができるが、カスケードエラーの防止と信頼性の維持には堅牢な監視が必要である。
マルチエージェントセンシング-アクションループは、分散エージェント間の協調センシングとアクションにより、これらの機能をさらに拡張し、協調を通じてリソース使用を最適化する。
さらに、生物学的システムにインスパイアされたニューロモルフィックコンピューティングは、エネルギーを節約し、レイテンシを低減し、階層的な制御をサポートするスパイクベースのイベント駆動処理のための効率的なフレームワークを提供する。
本稿では,アルゴリズムモデルとハードウェアおよび環境力学を整合させるエンドツーエンドの協調設計戦略の重要性を強調し,複雑な環境におけるエネルギー効率の高いエッジ自律性に対するスループット,精度,適応性を改善するために,層間相互依存性を改善する。
関連論文リスト
- EdgeMLBalancer: A Self-Adaptive Approach for Dynamic Model Switching on Resource-Constrained Edge Devices [0.0]
エッジデバイス上の機械学習は、リソース制約のある環境でリアルタイムAIアプリケーションを可能にする。
計算資源を管理する既存のソリューションは、しばしば正確さやエネルギー効率に焦点を絞っている。
エッジデバイス上でのCPU利用とリソース管理を最適化する自己適応型アプローチを提案する。
論文 参考訳(メタデータ) (2025-02-10T14:11:29Z) - Synergistic Development of Perovskite Memristors and Algorithms for Robust Analog Computing [53.77822620185878]
本稿では,ペロブスカイト・メムリスタの製作を同時に最適化し,ロバストなアナログDNNを開発するための相乗的手法を提案する。
BO誘導ノイズインジェクションを利用したトレーニング戦略であるBayesMultiを開発した。
我々の統合されたアプローチは、より深くより広いネットワークでのアナログコンピューティングの使用を可能にし、最大100倍の改善を実現します。
論文 参考訳(メタデータ) (2024-12-03T19:20:08Z) - A Local Information Aggregation based Multi-Agent Reinforcement Learning for Robot Swarm Dynamic Task Allocation [4.144893164317513]
分散化された部分観測可能なマルコフ決定プロセス(Dec_POMDP)を用いた新しいフレームワークを提案する。
我々の方法論の核心は、局所情報集約多元決定政策勾配(LIA_MADDPG)アルゴリズムである。
実験により,LIAモジュールは様々なCTDEベースのMARL法にシームレスに統合可能であることが示された。
論文 参考訳(メタデータ) (2024-11-29T07:53:05Z) - Neural Horizon Model Predictive Control -- Increasing Computational Efficiency with Neural Networks [0.0]
予測制御をモデル化するための機械学習支援手法を提案する。
安全保証を維持しつつ,問題地平線の一部を近似することを提案する。
提案手法は,迅速な制御応答を必要とするアプリケーションを含む,幅広いアプリケーションに適用可能である。
論文 参考訳(メタデータ) (2024-08-19T08:13:37Z) - Design Optimization of NOMA Aided Multi-STAR-RIS for Indoor Environments: A Convex Approximation Imitated Reinforcement Learning Approach [51.63921041249406]
非直交多重アクセス(Noma)により、複数のユーザが同じ周波数帯域を共有でき、同時に再構成可能なインテリジェントサーフェス(STAR-RIS)を送信および反射することができる。
STAR-RISを屋内に展開することは、干渉緩和、電力消費、リアルタイム設定における課題を提示する。
複数のアクセスポイント(AP)、STAR-RIS、NOMAを利用した新しいネットワークアーキテクチャが屋内通信のために提案されている。
論文 参考訳(メタデータ) (2024-06-19T07:17:04Z) - Growing Q-Networks: Solving Continuous Control Tasks with Adaptive Control Resolution [51.83951489847344]
ロボット工学の応用において、スムーズな制御信号はシステム摩耗とエネルギー効率を減らすために一般的に好まれる。
本研究では,離散的な動作空間を粗い状態から細かい制御分解能まで拡大することにより,この性能ギャップを埋めることを目的とする。
我々の研究は、値分解とアダプティブ・コントロール・リゾリューションが組み合わさることで、単純な批判のみのアルゴリズムが得られ、連続制御タスクにおいて驚くほど高い性能が得られることを示唆している。
論文 参考訳(メタデータ) (2024-04-05T17:58:37Z) - Integrating DeepRL with Robust Low-Level Control in Robotic Manipulators for Non-Repetitive Reaching Tasks [0.24578723416255746]
ロボット工学では、現代の戦略は学習に基づくもので、複雑なブラックボックスの性質と解釈可能性の欠如が特徴である。
本稿では, 深部強化学習(DRL)に基づく衝突のない軌道プランナと, 自動調整型低レベル制御戦略を統合することを提案する。
論文 参考訳(メタデータ) (2024-02-04T15:54:03Z) - Task-Oriented Sensing, Computation, and Communication Integration for
Multi-Device Edge AI [108.08079323459822]
本稿では,AIモデルの分割推論と統合センシング通信(ISAC)を併用した,新しいマルチインテリジェントエッジ人工レイテンシ(AI)システムについて検討する。
推定精度は近似的だが抽出可能な計量、すなわち判別利得を用いて測定する。
論文 参考訳(メタデータ) (2022-07-03T06:57:07Z) - Learning Robotic Manipulation Skills Using an Adaptive Force-Impedance
Action Space [7.116986445066885]
強化学習は、様々な困難な意思決定タスクにおいて、有望な結果をもたらしました。
高速な人間のような適応制御手法は複雑なロボットの相互作用を最適化するが、非構造化タスクに必要なマルチモーダルフィードバックを統合することができない。
本稿では,階層的学習と適応アーキテクチャにおける学習問題を要因として,両世界を最大限に活用することを提案する。
論文 参考訳(メタデータ) (2021-10-19T12:09:02Z) - Energy-Efficient Multi-Orchestrator Mobile Edge Learning [54.28419430315478]
Mobile Edge Learning(MEL)は、エッジデバイス上で機械学習(ML)モデルの分散トレーニングを特徴とする、協調学習パラダイムである。
MELでは、異なるデータセットで複数の学習タスクが共存する可能性がある。
本稿では, エネルギー消費, 精度, 解複雑性のトレードオフを容易にする軽量なアルゴリズムを提案する。
論文 参考訳(メタデータ) (2021-09-02T07:37:10Z) - Learning Compliance Adaptation in Contact-Rich Manipulation [81.40695846555955]
本稿では,コンタクトリッチタスクに必要な力プロファイルの予測モデルを学習するための新しいアプローチを提案する。
このアプローチは、双方向Gated Recurrent Units (Bi-GRU) に基づく異常検出と適応力/インピーダンス制御を組み合わせたものである。
論文 参考訳(メタデータ) (2020-05-01T05:23:34Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。