論文の概要: Diffeomorphic Temporal Alignment Nets for Time-series Joint Alignment and Averaging
- arxiv url: http://arxiv.org/abs/2502.06591v1
- Date: Mon, 10 Feb 2025 15:55:08 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-02-11 14:30:29.087964
- Title: Diffeomorphic Temporal Alignment Nets for Time-series Joint Alignment and Averaging
- Title(参考訳): 時系列関節アライメントと平均化のための微分型時間アライメントネット
- Authors: Ron Shapira Weber, Oren Freifeld,
- Abstract要約: 時系列分析では、非線形時間的不整合は、森林労働者がより単純な平均化を行うための重要な課題である。
DTANは入力依存の方法で微分同相変換を予測し、適用することにより、時系列アンサンブルのジョイントアライメント(JA)と平均化を容易にする。
我々は、マルチタスク学習(MT-DTAN)を組み込むためにフレームワークを拡張し、同時調整と分類を可能にした。
- 参考スコア(独自算出の注目度): 8.14908648005543
- License:
- Abstract: In time-series analysis, nonlinear temporal misalignment remains a pivotal challenge that forestalls even simple averaging. Since its introduction, the Diffeomorphic Temporal Alignment Net (DTAN), which we first introduced (Weber et al., 2019) and further developed in (Weber & Freifeld, 2023), has proven itself as an effective solution for this problem (these conference papers are earlier partial versions of the current manuscript). DTAN predicts and applies diffeomorphic transformations in an input-dependent manner, thus facilitating the joint alignment (JA) and averaging of time-series ensembles in an unsupervised or a weakly-supervised manner. The inherent challenges of the weakly/unsupervised setting, particularly the risk of trivial solutions through excessive signal distortion, are mitigated using either one of two distinct strategies: 1) a regularization term for warps; 2) using the Inverse Consistency Averaging Error (ICAE). The latter is a novel, regularization-free approach which also facilitates the JA of variable-length signals. We also further extend our framework to incorporate multi-task learning (MT-DTAN), enabling simultaneous time-series alignment and classification. Additionally, we conduct a comprehensive evaluation of different backbone architectures, demonstrating their efficacy in time-series alignment tasks. Finally, we showcase the utility of our approach in enabling Principal Component Analysis (PCA) for misaligned time-series data. Extensive experiments across 128 UCR datasets validate the superiority of our approach over contemporary averaging methods, including both traditional and learning-based approaches, marking a significant advancement in the field of time-series analysis.
- Abstract(参考訳): 時系列分析では、非線形時間的不整合は、森林労働者がより単純な平均化を行うための重要な課題である。
私たちが最初に紹介した(Weber et al , 2019)Diffomorphic Temporal Alignment Net(DTAN)が紹介されて以降,さらに発展し(Weber & Freifeld, 2023)、この問題に対する効果的な解決策として証明されている(これらのカンファレンス論文は、現在の写本のより初期の部分的なバージョンである)。
DTANは、入力依存的な方法で微分同相変換を予測し、適用することにより、非教師的または弱い教師付き方法で時系列アンサンブルの結合アライメント(JA)と平均化を容易にする。
特に過度の信号歪みによる自明な解のリスクは、2つの異なる戦略のいずれかを用いて緩和される。
1) ワープの正規化用語
2) Inverse Consistency Averaging Error(ICAE)の使用。
後者は、可変長信号のJAを促進する新しい正則化のないアプローチである。
さらに、マルチタスク学習(MT-DTAN)を組み込むことで、時系列のアライメントと分類を同時に行えるようにしています。
さらに、異なるバックボーンアーキテクチャの包括的な評価を行い、時系列アライメントタスクにおけるそれらの有効性を示す。
最後に、不整合な時系列データに対して主成分分析(PCA)を実現するためのアプローチの有用性を示す。
128のUCRデータセットにわたる大規模な実験は、従来的および学習的アプローチを含む現代の平均化手法よりも、我々のアプローチの優位性を検証し、時系列分析の分野で大きな進歩を見せている。
関連論文リスト
- General Time-series Model for Universal Knowledge Representation of Multivariate Time-Series data [61.163542597764796]
周波数領域で異なる時間粒度(または対応する周波数分解能)の時系列が異なる結合分布を示すことを示す。
時間領域と周波数領域の両方からタイムアウェア表現を学習するために,新しいFourierナレッジアテンション機構を提案する。
自己回帰的空白埋め込み事前学習フレームワークを時系列解析に初めて組み込み、生成タスクに依存しない事前学習戦略を実現する。
論文 参考訳(メタデータ) (2025-02-05T15:20:04Z) - WaveGNN: Modeling Irregular Multivariate Time Series for Accurate Predictions [3.489870763747715]
実世界の時系列は、しばしば不整合タイムスタンプ、欠落したエントリ、可変サンプリングレートなどの不規則性を示す。
既存のアプローチは、しばしばバイアスを生じさせる計算に頼っている。
本稿では,不規則にサンプリングされた時系列データを埋め込んで正確な予測を行う新しいフレームワークWaveGNNを提案する。
論文 参考訳(メタデータ) (2024-12-14T00:03:44Z) - TimeDART: A Diffusion Autoregressive Transformer for Self-Supervised Time Series Representation [47.58016750718323]
我々は,新しい自己教師型時系列事前学習フレームワークであるTimeDARTを提案する。
TimeDARTは2つの強力な生成パラダイムを統合し、より伝達可能な表現を学ぶ。
時系列予測と分類のための公開データセットに関する広範な実験を行う。
論文 参考訳(メタデータ) (2024-10-08T06:08:33Z) - Graph Spatiotemporal Process for Multivariate Time Series Anomaly
Detection with Missing Values [67.76168547245237]
本稿では,グラフ時間過程と異常スコアラを用いて異常を検出するGST-Proという新しいフレームワークを提案する。
実験結果から,GST-Pro法は時系列データ中の異常を効果的に検出し,最先端の手法より優れていることがわかった。
論文 参考訳(メタデータ) (2024-01-11T10:10:16Z) - Match-And-Deform: Time Series Domain Adaptation through Optimal
Transport and Temporal Alignment [10.89671409446191]
我々は、ソースとターゲット時系列の対応を見つけることを目的としたMatch-And-Deform(MAD)アプローチを導入する。
ディープニューラルネットワークに組み込むと、MADは両方のドメインを整列する時系列の新しい表現を学ぶのに役立つ。
ベンチマークデータセットとリモートセンシングデータに関する実証研究は、MADが有意義なサンプルとサンプルのペアリングと時間シフト推定を行うことを示した。
論文 参考訳(メタデータ) (2023-08-24T09:57:11Z) - Robust Detection of Lead-Lag Relationships in Lagged Multi-Factor Models [61.10851158749843]
データ固有のリード-ラグ関係を発見することで、重要な洞察を得ることができる。
階層化多要素モデルにおけるリードラグ関係のロバスト検出のためのクラスタリング駆動手法を開発した。
論文 参考訳(メタデータ) (2023-05-11T10:30:35Z) - Mlinear: Rethink the Linear Model for Time-series Forecasting [9.841293660201261]
Mlinearは、主に線形層に基づく単純だが効果的な方法である。
複数のデータセット上で広く使われている平均二乗誤差(MSE)を大幅に上回る新しい損失関数を導入する。
提案手法は,PatchTSTを336列長入力で21:3,512列長入力で29:10で有意に上回った。
論文 参考訳(メタデータ) (2023-05-08T15:54:18Z) - Harnessing Contrastive Learning and Neural Transformation for Time Series Anomaly Detection [0.0]
時系列異常検出(TSAD)は多くの産業応用において重要な役割を担っている。
コントラスト学習は、ラベルのないデータから意味のある表現を抽出する過程において、時系列領域で勢いを増している。
本研究では,学習可能な変換で強化されたウィンドウベースのコントラスト学習戦略を取り入れた新しいアプローチであるCNTを提案する。
論文 参考訳(メタデータ) (2023-04-16T21:36:19Z) - Unsupervised Time-Series Representation Learning with Iterative Bilinear
Temporal-Spectral Fusion [6.154427471704388]
本稿では,双線形時間スペクトル融合(BTSF)という統合フレームワークを提案する。
具体的には、インスタンスレベルの拡張を時系列全体への単純なドロップアウトで利用し、長期的依存関係を最大限に捉えます。
時間-周波数ペアの親和性を明示的にエンコードするために、新しい反復性双線形時間-スペクトル融合を考案する。
論文 参考訳(メタデータ) (2022-02-08T14:04:08Z) - Semi-supervised Domain Adaptive Structure Learning [72.01544419893628]
半教師付きドメイン適応 (SSDA) は,1) アノテーションの低いデータに過度に適合する手法と,2) ドメイン間の分散シフトの両方を克服しなければならない課題である。
SSLとDAの協調を正規化するための適応型構造学習手法を提案する。
論文 参考訳(メタデータ) (2021-12-12T06:11:16Z) - Bottom-Up Temporal Action Localization with Mutual Regularization [107.39785866001868]
TALの最先端の解決策は、3つの行動指示相のフレームレベルの確率を評価することである。
学習手順を相互に規則化するための2つの規則化用語を導入する。
実験は2つの人気のTALデータセット、THUMOS14とActivityNet1.3で行われている。
論文 参考訳(メタデータ) (2020-02-18T03:59:13Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。