論文の概要: MaterialFusion: High-Quality, Zero-Shot, and Controllable Material Transfer with Diffusion Models
- arxiv url: http://arxiv.org/abs/2502.06606v1
- Date: Mon, 10 Feb 2025 16:04:33 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-02-11 14:31:31.583637
- Title: MaterialFusion: High-Quality, Zero-Shot, and Controllable Material Transfer with Diffusion Models
- Title(参考訳): 物質融合:拡散モデルによる高品質・ゼロショット・制御可能な物質移動
- Authors: Kamil Garifullin, Maxim Nikolaev, Andrey Kuznetsov, Aibek Alanov,
- Abstract要約: 本稿では,高品質な物質移動のための新しいフレームワークであるMaterialFusionを紹介する。
ユーザーは、新しい材料特性とオブジェクトの本来の特徴の最適なバランスを保ちながら、材料応用の度合いを調整できる。
- 参考スコア(独自算出の注目度): 1.7749342709605145
- License:
- Abstract: Manipulating the material appearance of objects in images is critical for applications like augmented reality, virtual prototyping, and digital content creation. We present MaterialFusion, a novel framework for high-quality material transfer that allows users to adjust the degree of material application, achieving an optimal balance between new material properties and the object's original features. MaterialFusion seamlessly integrates the modified object into the scene by maintaining background consistency and mitigating boundary artifacts. To thoroughly evaluate our approach, we have compiled a dataset of real-world material transfer examples and conducted complex comparative analyses. Through comprehensive quantitative evaluations and user studies, we demonstrate that MaterialFusion significantly outperforms existing methods in terms of quality, user control, and background preservation. Code is available at https://github.com/kzGarifullin/MaterialFusion.
- Abstract(参考訳): 画像内のオブジェクトの物質的外観を操作することは、拡張現実、仮想プロトタイピング、デジタルコンテンツ作成といったアプリケーションにとって非常に重要である。
本稿では,高品質な物質移動のための新しいフレームワークであるMaterialFusionについて述べる。
MaterialFusionは、バックグラウンドの一貫性を維持し、境界アーティファクトを緩和することによって、修正されたオブジェクトをシームレスにシーンに統合する。
提案手法を徹底的に評価するために,実世界の物質移動事例のデータセットを作成し,複雑な比較分析を行った。
総合的な定量的評価とユーザスタディを通じて,MaterialFusionは,品質,ユーザコントロール,背景保存の面で,既存の手法よりも優れていたことを実証した。
コードはhttps://github.com/kzGarifullin/MaterialFusion.comで入手できる。
関連論文リスト
- Foundation Model for Composite Materials and Microstructural Analysis [0.0]
複合材料に特化して設計された基礎モデルを提案する。
本研究は, 複合材料における基礎モデルの有効性と有効性について検証した。
このフレームワークは実験データが少ない場合でも高精度な予測を可能にする。
論文 参考訳(メタデータ) (2024-11-10T19:06:25Z) - MaterialFusion: Enhancing Inverse Rendering with Material Diffusion Priors [67.74705555889336]
本稿では,テクスチャと材料特性に先立って2Dを組み込んだ,従来の3次元逆レンダリングパイプラインであるMaterialFusionを紹介する。
本稿では,2次元拡散モデルであるStableMaterialについて述べる。
種々の照明条件下で, 合成および実物体の4つのデータセット上でのMaterialFusionの照度特性を検証した。
論文 参考訳(メタデータ) (2024-09-23T17:59:06Z) - Make-it-Real: Unleashing Large Multimodal Model for Painting 3D Objects with Realistic Materials [108.59709545364395]
GPT-4Vは、材料を効果的に認識し、記述することができ、詳細な材料ライブラリを構築することができる。
そして、整合した材料を、新たなSVBRDF材料生成の基準として慎重に適用する。
Make-it-Realは、3Dコンテンツ作成ワークフローに合理化された統合を提供する。
論文 参考訳(メタデータ) (2024-04-25T17:59:58Z) - MaterialSeg3D: Segmenting Dense Materials from 2D Priors for 3D Assets [63.284244910964475]
本稿では,2次元のセマンティクスから基礎となる物質を推定する3次元アセット素材生成フレームワークを提案する。
このような先行モデルに基づいて,材料を三次元空間で解析する機構を考案する。
論文 参考訳(メタデータ) (2024-04-22T07:00:17Z) - IntrinsicAnything: Learning Diffusion Priors for Inverse Rendering Under Unknown Illumination [37.96484120807323]
本稿では,未知の静止照明条件下で撮影されたポーズ画像から対象物質を回収することを目的とする。
我々は、最適化プロセスの正規化のための生成モデルを用いて、その材料を事前に学習する。
実世界および合成データセットを用いた実験により,本手法が材料回収における最先端性能を実現することを示す。
論文 参考訳(メタデータ) (2024-04-17T17:45:08Z) - MatSynth: A Modern PBR Materials Dataset [4.548755617115688]
Mat Synthは4000以上のCC0超高分解能PBR材料のデータセットである。
Mat Synth はプロジェクトページ https://www.gvecchio.com/matsynth.com で公開されている。
論文 参考訳(メタデータ) (2024-01-11T17:20:34Z) - Intrinsic Image Diffusion for Indoor Single-view Material Estimation [55.276815106443976]
室内シーンの外観分解のための生成モデルIntrinsic Image Diffusionを提案する。
1つの入力ビューから、アルベド、粗さ、および金属地図として表される複数の材料説明をサンプリングする。
提案手法は,PSNRで1.5dB$,アルベド予測で45%のFIDスコアを達成し,よりシャープで,より一貫性があり,より詳細な資料を生成する。
論文 参考訳(メタデータ) (2023-12-19T15:56:19Z) - Alchemist: Parametric Control of Material Properties with Diffusion
Models [51.63031820280475]
本手法は,フォトリアリズムで知られているテキスト・イメージ・モデルの生成先行に乗じる。
我々は,NeRFの材料化へのモデルの適用の可能性を示す。
論文 参考訳(メタデータ) (2023-12-05T18:58:26Z) - MatFuse: Controllable Material Generation with Diffusion Models [10.993516790237503]
MatFuseは3D素材の作成と編集に拡散モデルの生成力を利用する統一的なアプローチである。
本手法は,カラーパレット,スケッチ,テキスト,画像など,複数のコンディショニング源を統合し,創造性を向上する。
複数の条件設定下でのMatFuseの有効性を実証し,材料編集の可能性を探る。
論文 参考訳(メタデータ) (2023-08-22T12:54:48Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。