論文の概要: RAILS: Risk-Aware Iterated Local Search for Joint SLA Decomposition and Service Provider Management in Multi-Domain Networks
- arxiv url: http://arxiv.org/abs/2502.06674v1
- Date: Mon, 10 Feb 2025 17:00:32 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-02-11 14:29:33.392157
- Title: RAILS: Risk-Aware Iterated Local Search for Joint SLA Decomposition and Service Provider Management in Multi-Domain Networks
- Title(参考訳): RAILS:マルチドメインネットワークにおけるSLA統合分割とサービスプロバイダ管理のためのリスク対応反復ローカル検索
- Authors: Cyril Shih-Huan Hsu, Chrysa Papagianni, Paola Grosso,
- Abstract要約: 5G技術はモバイルネットワークをマルチサービス環境に変え、多様なサービスレベル合意(SLA)を満たすために効率的なネットワークスライシングを必要とした。
本稿では,リスク・アウェア・イテレーテッド・ローカル・サーチ(RAILS, Risk-Aware Iterated Local Search)を紹介する。
- 参考スコア(独自算出の注目度): 0.0
- License:
- Abstract: The emergence of the fifth generation (5G) technology has transformed mobile networks into multi-service environments, necessitating efficient network slicing to meet diverse Service Level Agreements (SLAs). SLA decomposition across multiple network domains, each potentially managed by different service providers, poses a significant challenge due to limited visibility into real-time underlying domain conditions. This paper introduces Risk-Aware Iterated Local Search (RAILS), a novel risk model-driven meta-heuristic framework designed to jointly address SLA decomposition and service provider selection in multi-domain networks. By integrating online risk modeling with iterated local search principles, RAILS effectively navigates the complex optimization landscape, utilizing historical feedback from domain controllers. We formulate the joint problem as a Mixed-Integer Nonlinear Programming (MINLP) problem and prove its NP-hardness. Extensive simulations demonstrate that RAILS achieves near-optimal performance, offering an efficient, real-time solution for adaptive SLA management in modern multi-domain networks.
- Abstract(参考訳): 第5世代(5G)技術の出現は、モバイルネットワークをマルチサービス環境に変え、多様なサービスレベル合意(SLA)を満たすために効率的なネットワークスライシングを必要としている。
複数のネットワークドメインにわたるSLA分解は、それぞれ異なるサービスプロバイダによって管理される可能性があるが、リアルタイムの基盤となるドメイン条件に対する視認性に制限があるため、大きな課題となる。
本稿では,リスク・アウェア・イテレーテッド・ローカル・サーチ(RAILS, Risk-Aware Iterated Local Search)を紹介する。
RAILSは、オンラインリスクモデリングと反復的なローカル検索原則を統合することで、ドメインコントローラからの過去のフィードバックを利用して、複雑な最適化環境を効果的にナビゲートする。
混合整数非線形計画法(MINLP)問題として結合問題を定式化し,NPの硬さを証明した。
大規模なシミュレーションにより、RAILSは最適に近い性能を示し、現代のマルチドメインネットワークにおける適応SLA管理のための効率的なリアルタイムソリューションを提供する。
関連論文リスト
- Adaptive Resource Allocation Optimization Using Large Language Models in Dynamic Wireless Environments [25.866960634041092]
現在のソリューションはドメイン固有のアーキテクチャや技術に依存しており、制約付き最適化のための一般的なDLアプローチは未開発のままである。
本稿では,制約を順守しながら複雑な資源配分問題に対処するために,資源割当(LLM-RAO)のための大規模言語モデルを提案する。
LLM-RAO は従来の DL 法と比較して最大40% の性能向上を実現し,分析手法よりも80$% 向上した。
論文 参考訳(メタデータ) (2025-02-04T12:56:59Z) - Cluster-Based Multi-Agent Task Scheduling for Space-Air-Ground Integrated Networks [60.085771314013044]
低高度経済は、コミュニケーションやセンシングなどの分野で発展する大きな可能性を秘めている。
本稿では,SAGINにおけるマルチUAV協調タスクスケジューリング問題に対処するため,クラスタリングに基づく多エージェントDeep Deterministic Policy Gradient (CMADDPG)アルゴリズムを提案する。
論文 参考訳(メタデータ) (2024-12-14T06:17:33Z) - Design Optimization of NOMA Aided Multi-STAR-RIS for Indoor Environments: A Convex Approximation Imitated Reinforcement Learning Approach [51.63921041249406]
非直交多重アクセス(Noma)により、複数のユーザが同じ周波数帯域を共有でき、同時に再構成可能なインテリジェントサーフェス(STAR-RIS)を送信および反射することができる。
STAR-RISを屋内に展開することは、干渉緩和、電力消費、リアルタイム設定における課題を提示する。
複数のアクセスポイント(AP)、STAR-RIS、NOMAを利用した新しいネットワークアーキテクチャが屋内通信のために提案されている。
論文 参考訳(メタデータ) (2024-06-19T07:17:04Z) - Large Language Models meet Network Slicing Management and Orchestration [0.3644165342767221]
本稿では,Large Language Models (LLM) とマルチエージェントシステムを利用したネットワークスライシングの今後の展望を提案する。
このフレームワークの実装に伴う課題と、それを緩和する潜在的なソリューションについて議論する。
論文 参考訳(メタデータ) (2024-03-20T16:29:52Z) - MARLIN: Soft Actor-Critic based Reinforcement Learning for Congestion
Control in Real Networks [63.24965775030673]
そこで本研究では,汎用的な渋滞制御(CC)アルゴリズムを設計するための新しい強化学習(RL)手法を提案する。
我々の解であるMARLINは、Soft Actor-Criticアルゴリズムを用いてエントロピーとリターンの両方を最大化する。
我々は,MARLINを実ネットワーク上で訓練し,実ミスマッチを克服した。
論文 参考訳(メタデータ) (2023-02-02T18:27:20Z) - Multi-Prompt Alignment for Multi-Source Unsupervised Domain Adaptation [86.02485817444216]
マルチプロンプトアライメント(MPA: Multi-Prompt Alignment)は,マルチソースUDAのためのシンプルかつ効率的なフレームワークである。
MPAは、学習したプロンプトを自動エンコードプロセスで認知し、再構築されたプロンプトの合意を最大化することでそれらを調整する。
実験によると、MPAは3つの一般的なデータセットで最先端の結果を達成し、DomainNetの平均精度は54.1%である。
論文 参考訳(メタデータ) (2022-09-30T03:40:10Z) - Evolutionary Deep Reinforcement Learning for Dynamic Slice Management in
O-RAN [11.464582983164991]
新しいオープン無線アクセスネットワーク(O-RAN)は、フレキシブルな設計、分離された仮想およびプログラマブルなコンポーネント、インテリジェントクローズループ制御などの特徴を区別する。
O-RANスライシングは、状況の変化に直面したネットワーク品質保証(QoS)のための重要な戦略として検討されている。
本稿では,ネットワークスライスを知的に管理できる新しいフレームワークを提案する。
論文 参考訳(メタデータ) (2022-08-30T17:00:53Z) - Multi-Objective Provisioning of Network Slices using Deep Reinforcement
Learning [5.074839768784803]
リアルタイムネットワークスライスプロビジョニング(NSP)問題は、オンライン多目的プログラミング最適化(MOIPO)問題としてモデル化されている。
交通需要予測にPPO(Proximal Policy Optimization)法を適用することにより,MOIPO問題の解を近似する。
提案手法の有効性を,SLA違反率とネットワーク運用コストの低いMOIPO解法と比較した。
論文 参考訳(メタデータ) (2022-07-27T23:04:22Z) - Semantic-Aware Collaborative Deep Reinforcement Learning Over Wireless
Cellular Networks [82.02891936174221]
複数のエージェントが無線ネットワーク上で協調できるコラボレーティブディープ強化学習(CDRL)アルゴリズムは有望なアプローチである。
本稿では,リソース制約のある無線セルネットワーク上で,意味的にリンクされたDRLタスクを持つ未学習エージェントのグループを効率的に協調させる,新しい意味認識型CDRL手法を提案する。
論文 参考訳(メタデータ) (2021-11-23T18:24:47Z) - CLARA: A Constrained Reinforcement Learning Based Resource Allocation
Framework for Network Slicing [19.990451009223573]
ネットワークスライシングは,5Gおよび将来のネットワークにおける資源利用のための有望なソリューションとして提案されている。
モデルや隠れ構造を知らずにCMDP(Constrained Markov Decision Process)として問題を定式化する。
本稿では、制約付き強化LeArningに基づくリソース割当アルゴリズムであるCLARAを用いて、この問題を解決することを提案する。
論文 参考訳(メタデータ) (2021-11-16T11:54:09Z) - Deep Adaptive Inference Networks for Single Image Super-Resolution [72.7304455761067]
シングルイメージ超解像(SISR)は、ディープ畳み込みニューラルネットワーク(CNN)の展開により、近年大きく進歩している。
本稿では,深部SISR(AdaDSR)の適応型推論ネットワークを活用することで,この問題に対処する。
我々のAdaDSRは、SISRモデルをバックボーンとし、画像の特徴とリソース制約を入力として取り、ローカルネットワーク深さのマップを予測する軽量アダプタモジュールを備える。
論文 参考訳(メタデータ) (2020-04-08T10:08:20Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。