RelGNN: Composite Message Passing for Relational Deep Learning
- URL: http://arxiv.org/abs/2502.06784v2
- Date: Fri, 06 Jun 2025 19:36:51 GMT
- Title: RelGNN: Composite Message Passing for Relational Deep Learning
- Authors: Tianlang Chen, Charilaos Kanatsoulis, Jure Leskovec,
- Abstract summary: We introduce RelGNN, a novel GNN framework specifically designed to leverage the unique structural characteristics of the graphs built from relational databases.<n>RelGNN is evaluated on 30 diverse real-world tasks from Relbench (Fey et al., 2024), and achieves state-of-the-art performance on the vast majority tasks, with improvements of up to 25%.
- Score: 56.48834369525997
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Predictive tasks on relational databases are critical in real-world applications spanning e-commerce, healthcare, and social media. To address these tasks effectively, Relational Deep Learning (RDL) encodes relational data as graphs, enabling Graph Neural Networks (GNNs) to exploit relational structures for improved predictions. However, existing RDL methods often overlook the intrinsic structural properties of the graphs built from relational databases, leading to modeling inefficiencies, particularly in handling many-to-many relationships. Here we introduce RelGNN, a novel GNN framework specifically designed to leverage the unique structural characteristics of the graphs built from relational databases. At the core of our approach is the introduction of atomic routes, which are simple paths that enable direct single-hop interactions between the source and destination nodes. Building upon these atomic routes, RelGNN designs new composite message passing and graph attention mechanisms that reduce redundancy, highlight key signals, and enhance predictive accuracy. RelGNN is evaluated on 30 diverse real-world tasks from Relbench (Fey et al., 2024), and achieves state-of-the-art performance on the vast majority of tasks, with improvements of up to 25%. Code is available at https://github.com/snap-stanford/RelGNN.
Related papers
- Rel-HNN: Split Parallel Hypergraph Neural Network for Learning on Relational Databases [3.6423651166048874]
Flattening the database poses challenges for deep learning models.<n>We propose a novel hypergraph-based framework, that we call rel-HNN.<n>We show that rel-HNN significantly outperforms existing methods in both classification and regression tasks.
arXiv Detail & Related papers (2025-07-16T18:20:45Z) - A Pre-training Framework for Relational Data with Information-theoretic Principles [57.93973948947743]
We introduce Task Vector Estimation (TVE), a novel pre-training framework that constructs supervisory signals via set-based aggregation over relational graphs.<n>TVE consistently outperforms traditional pre-training baselines.<n>Our findings advocate for pre-training objectives that encode task heterogeneity and temporal structure as design principles for predictive modeling on relational databases.
arXiv Detail & Related papers (2025-07-14T00:17:21Z) - Relational Deep Learning: Challenges, Foundations and Next-Generation Architectures [50.46688111973999]
Graph machine learning has led to a significant increase in the capabilities of models that learn on arbitrary graph-structured data.<n>We present a new blueprint that enables end-to-end representation of'relational entity graphs' without traditional engineering feature.<n>We discuss key challenges including large-scale multi-table integration and the complexities of modeling temporal dynamics and heterogeneous data.
arXiv Detail & Related papers (2025-06-19T23:51:38Z) - Relational Graph Transformer [44.56132732108148]
Graph Transformer (Relel) is the first graph transformer designed specifically for relational tables.<n>Relel employs a novel multi-element tokenization strategy that decomposes each node into five components.<n>Our architecture combines local attention over sampled subgraphs with global attention to learnable centroids.
arXiv Detail & Related papers (2025-05-16T07:51:58Z) - ScaleGNN: Towards Scalable Graph Neural Networks via Adaptive High-order Neighboring Feature Fusion [15.33100217104504]
This paper proposes a novel framework for large-scale graphs named ScaleGNN.
It simultaneously addresses both challenges by adaptively fusing multi-level graph features.
Our approach consistently outperforms state-of-the-art GNN models in both accuracy and computational efficiency.
arXiv Detail & Related papers (2025-04-22T14:05:11Z) - Boosting Relational Deep Learning with Pretrained Tabular Models [18.34233986830027]
Graph Neural Networks (GNNs) offer a compelling alternative inherently by modeling these relationships.
Our framework achieves up to $33%$ performance improvement and a $526times$ inference speedup compared to GNNs.
arXiv Detail & Related papers (2025-04-07T11:19:04Z) - A Transfer Framework for Enhancing Temporal Graph Learning in Data-Scarce Settings [30.97142882931946]
Dynamic interactions between entities are prevalent in domains like social platforms, financial systems, healthcare, and e-commerce.
TGNNs have achieved strong results for such predictive tasks but typically require extensive training data, which is often limited in real-world scenarios.
We introduce a novel transfer approach that disentangles node representations from their associated features through a structured bipartite encoding mechanism.
arXiv Detail & Related papers (2025-03-02T11:10:29Z) - COMBINEX: A Unified Counterfactual Explainer for Graph Neural Networks via Node Feature and Structural Perturbations [6.894071825948456]
We propose COMBINEX, a novel GNN explainer that generates counterfactual explanations for both node and graph classification tasks.
Unlike prior methods, which treat structural and feature-based changes independently, COMBINEX optimally balances modifications to edges and node features.
This unified approach ensures minimal yet effective changes required to flip a model's prediction, resulting in realistic and interpretable counterfactuals.
arXiv Detail & Related papers (2025-02-14T12:17:24Z) - Graph as a feature: improving node classification with non-neural graph-aware logistic regression [2.952177779219163]
Graph-aware Logistic Regression (GLR) is a non-neural model designed for node classification tasks.
Unlike traditional graph algorithms that use only a fraction of the information accessible to GNNs, our proposed model simultaneously leverages both node features and the relationships between entities.
arXiv Detail & Related papers (2024-11-19T08:32:14Z) - DGNN: Decoupled Graph Neural Networks with Structural Consistency
between Attribute and Graph Embedding Representations [62.04558318166396]
Graph neural networks (GNNs) demonstrate a robust capability for representation learning on graphs with complex structures.
A novel GNNs framework, dubbed Decoupled Graph Neural Networks (DGNN), is introduced to obtain a more comprehensive embedding representation of nodes.
Experimental results conducted on several graph benchmark datasets verify DGNN's superiority in node classification task.
arXiv Detail & Related papers (2024-01-28T06:43:13Z) - Interpretable A-posteriori Error Indication for Graph Neural Network Surrogate Models [0.0]
This work introduces an interpretability enhancement procedure for graph neural networks (GNNs)
The end result is an interpretable GNN model that isolates regions in physical space, corresponding to sub-graphs, that are intrinsically linked to the forecasting task.
The interpretable GNNs can also be used to identify, during inference, graph nodes that correspond to a majority of the anticipated forecasting error.
arXiv Detail & Related papers (2023-11-13T18:37:07Z) - SPARE: A Single-Pass Neural Model for Relational Databases [36.55513135391452]
We propose SPARE, a new class of neural models that can be trained efficiently on RDBs while providing similar accuracies as GNNs.
For enabling efficient training, different from GNNs, SPARE makes use of the fact that data in RDBs has a predictive regular structure, which allows one to train these models in a single pass while exploiting symmetries at the same time.
arXiv Detail & Related papers (2023-10-20T15:23:17Z) - Revisiting Heterophily For Graph Neural Networks [42.41238892727136]
Graph Neural Networks (GNNs) extend basic Neural Networks (NNs) by using graph structures based on the relational inductive bias (homophily assumption)
Recent work has identified a non-trivial set of datasets where their performance compared to NNs is not satisfactory.
arXiv Detail & Related papers (2022-10-14T08:00:26Z) - Relation Embedding based Graph Neural Networks for Handling
Heterogeneous Graph [58.99478502486377]
We propose a simple yet efficient framework to make the homogeneous GNNs have adequate ability to handle heterogeneous graphs.
Specifically, we propose Relation Embedding based Graph Neural Networks (RE-GNNs), which employ only one parameter per relation to embed the importance of edge type relations and self-loop connections.
arXiv Detail & Related papers (2022-09-23T05:24:18Z) - Simple and Efficient Heterogeneous Graph Neural Network [55.56564522532328]
Heterogeneous graph neural networks (HGNNs) have powerful capability to embed rich structural and semantic information of a heterogeneous graph into node representations.
Existing HGNNs inherit many mechanisms from graph neural networks (GNNs) over homogeneous graphs, especially the attention mechanism and the multi-layer structure.
This paper conducts an in-depth and detailed study of these mechanisms and proposes Simple and Efficient Heterogeneous Graph Neural Network (SeHGNN)
arXiv Detail & Related papers (2022-07-06T10:01:46Z) - Automatic Relation-aware Graph Network Proliferation [182.30735195376792]
We propose Automatic Relation-aware Graph Network Proliferation (ARGNP) for efficiently searching GNNs.
These operations can extract hierarchical node/relational information and provide anisotropic guidance for message passing on a graph.
Experiments on six datasets for four graph learning tasks demonstrate that GNNs produced by our method are superior to the current state-of-the-art hand-crafted and search-based GNNs.
arXiv Detail & Related papers (2022-05-31T10:38:04Z) - Deep Architecture Connectivity Matters for Its Convergence: A
Fine-Grained Analysis [94.64007376939735]
We theoretically characterize the impact of connectivity patterns on the convergence of deep neural networks (DNNs) under gradient descent training.
We show that by a simple filtration on "unpromising" connectivity patterns, we can trim down the number of models to evaluate.
arXiv Detail & Related papers (2022-05-11T17:43:54Z) - Graph Ordering Attention Networks [22.468776559433614]
Graph Neural Networks (GNNs) have been successfully used in many problems involving graph-structured data.
We introduce the Graph Ordering Attention (GOAT) layer, a novel GNN component that captures interactions between nodes in a neighborhood.
GOAT layer demonstrates its increased performance in modeling graph metrics that capture complex information.
arXiv Detail & Related papers (2022-04-11T18:13:19Z) - ARM-Net: Adaptive Relation Modeling Network for Structured Data [29.94433633729326]
ARM-Net is an adaptive relation modeling network tailored for structured data and a lightweight framework ARMOR based on ARM-Net for relational data.
We show that ARM-Net consistently outperforms existing models and provides more interpretable predictions for datasets.
arXiv Detail & Related papers (2021-07-05T07:37:24Z) - Reinforced Neighborhood Selection Guided Multi-Relational Graph Neural
Networks [68.9026534589483]
RioGNN is a novel Reinforced, recursive and flexible neighborhood selection guided multi-relational Graph Neural Network architecture.
RioGNN can learn more discriminative node embedding with enhanced explainability due to the recognition of individual importance of each relation.
arXiv Detail & Related papers (2021-04-16T04:30:06Z) - Policy-GNN: Aggregation Optimization for Graph Neural Networks [60.50932472042379]
Graph neural networks (GNNs) aim to model the local graph structures and capture the hierarchical patterns by aggregating the information from neighbors.
It is a challenging task to develop an effective aggregation strategy for each node, given complex graphs and sparse features.
We propose Policy-GNN, a meta-policy framework that models the sampling procedure and message passing of GNNs into a combined learning process.
arXiv Detail & Related papers (2020-06-26T17:03:06Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.