論文の概要: CAST: Cross Attention based multimodal fusion of Structure and Text for materials property prediction
- arxiv url: http://arxiv.org/abs/2502.06836v1
- Date: Thu, 06 Feb 2025 02:29:39 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-02-12 14:08:42.255471
- Title: CAST: Cross Attention based multimodal fusion of Structure and Text for materials property prediction
- Title(参考訳): CAST:クロスアテンションに基づく材料特性予測のための構造とテキストのマルチモーダル融合
- Authors: Jaewan Lee, Changyoung Park, Hongjun Yang, Sungbin Lim, Sehui Han,
- Abstract要約: グラフニューラルネットワーク(GNN)は、結晶構造をグラフとして表現する能力によって際立っている。
これらの方法は、クリスタルシステムや繰り返しユニット接続といった重要なグローバル情報を失うことが多い。
本稿では,重要な資料情報を保持するために,グラフとテキストのモダリティを統合したマルチモーダル融合モデルであるCASTを提案する。
- 参考スコア(独自算出の注目度): 5.958532929795774
- License:
- Abstract: Recent advancements in AI have revolutionized property prediction in materials science and accelerating material discovery. Graph neural networks (GNNs) stand out due to their ability to represent crystal structures as graphs, effectively capturing local interactions and delivering superior predictions. However, these methods often lose critical global information, such as crystal systems and repetitive unit connectivity. To address this, we propose CAST, a cross-attention-based multimodal fusion model that integrates graph and text modalities to preserve essential material information. CAST combines node- and token-level features using cross-attention mechanisms, surpassing previous approaches reliant on material-level embeddings like graph mean-pooling or [CLS] tokens. A masked node prediction pretraining strategy further enhances atomic-level information integration. Our method achieved up to 22.9\% improvement in property prediction across four crystal properties including band gap compared to methods like CrysMMNet and MultiMat. Pretraining was key to aligning node and text embeddings, with attention maps confirming its effectiveness in capturing relationships between nodes and tokens. This study highlights the potential of multimodal learning in materials science, paving the way for more robust predictive models that incorporate both local and global information.
- Abstract(参考訳): AIの最近の進歩は、材料科学と材料発見の加速において、資産予測に革命をもたらした。
グラフニューラルネットワーク(GNN)は、結晶構造をグラフとして表現し、局所的な相互作用を効果的に捉え、優れた予測を提供する能力によって際立っている。
しかし、これらの手法は結晶系や繰り返しユニット接続といった重要なグローバル情報を失うことが多い。
そこで本研究では,本質的な資料情報を保持するために,グラフとテキストのモダリティを統合したマルチモーダル融合モデルであるCASTを提案する。
CASTは、クロスアテンションメカニズムを使用してノードレベルとトークンレベルの機能を結合し、グラフ平均プールや[CLS]トークンのようなマテリアルレベルの埋め込みに依存した以前のアプローチを上回ります。
マスクノード予測事前学習戦略により、原子レベルの情報統合がさらに強化される。
CrysMMNet法やMultiMat法と比較して,バンドギャップを含む4つの結晶特性に対して最大22.9\%の特性予測が達成された。
ノードとテキストの埋め込みの調整には事前トレーニングが重要であり、ノードとトークンの関係をキャプチャする効果を注意マップが確認した。
この研究は、材料科学におけるマルチモーダル学習の可能性を強調し、局所情報とグローバル情報の両方を組み込んだより堅牢な予測モデルを構築する。
関連論文リスト
- Characterizing Massive Activations of Attention Mechanism in Graph Neural Networks [0.9499648210774584]
近年、複雑なパターンをキャプチャする能力を改善するため、注意機構がグラフニューラルネットワーク(GNN)に統合されている。
本稿では,注意層内におけるMA(Massive Activations)の出現を明らかにした最初の総合的研究について述べる。
本研究は,ZINC,TOX21,ProteINSなどのベンチマークデータセットを用いて,GNNモデルの評価を行う。
論文 参考訳(メタデータ) (2024-09-05T12:19:07Z) - Cross-Modal Learning for Chemistry Property Prediction: Large Language Models Meet Graph Machine Learning [0.0]
グラフニューラルネットワーク(GNN)の分析能力と大規模言語モデル(LLM)の言語生成・予測能力を利用する多モード融合(MMF)フレームワークを提案する。
本フレームワークは,グラフ構造化データのモデリングにおけるGNNの有効性とLLMのゼロショットおよび少数ショット学習能力を組み合わせることにより,オーバーフィッティングのリスクを低減し,予測の改善を実現する。
論文 参考訳(メタデータ) (2024-08-27T11:10:39Z) - Enhancing material property prediction with ensemble deep graph convolutional networks [9.470117608423957]
近年の取り組みは、プロパティ予測にディープラーニングベースのグラフニューラルネットワークを含む高度なMLアルゴリズムの採用に重点を置いている。
本研究は,物質特性予測タスクを対象とする深層学習に基づくグラフニューラルネットワークにおけるアンサンブル戦略の詳細な評価を行う。
CGCNN(Crystal Graph Convolutional Neural Network)とそのマルチタスクバージョンであるMT-CGCNNを試験することにより、アンサンブル技術、特に予測平均化が従来のメトリクスを超える精度を大幅に向上することを示した。
論文 参考訳(メタデータ) (2024-07-26T16:12:06Z) - Benchmark on Drug Target Interaction Modeling from a Structure Perspective [48.60648369785105]
薬物と標的の相互作用の予測は、薬物の発見と設計に不可欠である。
グラフニューラルネットワーク(GNN)やトランスフォーマーに基づく最近の手法は、さまざまなデータセットで例外的なパフォーマンスを示している。
我々は,GNNベースと暗黙的(トランスフォーマーベース)構造学習アルゴリズムを多用することにより,構造の観点からの薬物-標的相互作用モデリングの総合的な調査とベンチマークを行う。
論文 参考訳(メタデータ) (2024-07-04T16:56:59Z) - PredRNN: A Recurrent Neural Network for Spatiotemporal Predictive
Learning [109.84770951839289]
歴史的文脈からビジュアルダイナミクスを学習するための新しいリカレントネットワークであるPredRNNを紹介する。
本手法は,3つの標準データセット上で高い競争結果が得られることを示す。
論文 参考訳(メタデータ) (2021-03-17T08:28:30Z) - Probabilistic Graph Attention Network with Conditional Kernels for
Pixel-Wise Prediction [158.88345945211185]
本稿では,画素レベルの予測を基本的側面,すなわち,技術の現状を推し進める新たなアプローチを提案する。
構造化されたマルチスケール機能学習と融合。
本論文では,マルチスケール表現を原理的に学習・融合するための新しいアテンテンションゲート条件ランダムフィールド(AG-CRFs)モデルに基づく確率的グラフアテンションネットワーク構造を提案する。
論文 参考訳(メタデータ) (2021-01-08T04:14:29Z) - Distance-aware Molecule Graph Attention Network for Drug-Target Binding
Affinity Prediction [54.93890176891602]
薬物標的結合親和性予測に適したDiStance-aware Molecule graph Attention Network (S-MAN)を提案する。
そこで,我々はまず,構築したポケットリガンドグラフに位相構造と空間位置情報を統合する位置符号化機構を提案する。
また,エッジレベルアグリゲーションとノードレベルアグリゲーションを有するエッジノード階層的アグリゲーション構造を提案する。
論文 参考訳(メタデータ) (2020-12-17T17:44:01Z) - Neural Networks Enhancement with Logical Knowledge [83.9217787335878]
関係データに対するKENNの拡張を提案する。
その結果、KENNは、存在関係データにおいても、基礎となるニューラルネットワークの性能を高めることができることがわかった。
論文 参考訳(メタデータ) (2020-09-13T21:12:20Z) - Graph Neural Network for Hamiltonian-Based Material Property Prediction [56.94118357003096]
無機材料のバンドギャップを予測できるいくつかの異なるグラフ畳み込みネットワークを提示し、比較する。
モデルは、それぞれの軌道自体の情報と相互の相互作用の2つの異なる特徴を組み込むように開発されている。
その結果,クロスバリデーションにより予測精度が期待できることがわかった。
論文 参考訳(メタデータ) (2020-05-27T13:32:10Z) - Global Attention based Graph Convolutional Neural Networks for Improved
Materials Property Prediction [8.371766047183739]
我々は,グラフニューラルネットワークに基づく無機材料特性の予測モデルであるGATGNNを開発した。
提案手法は, 従来のモデルの予測よりも優れており, 材料の結晶化に関する知見を提供することができる。
論文 参考訳(メタデータ) (2020-03-11T07:43:14Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。