論文の概要: SnipGen: A Mining Repository Framework for Evaluating LLMs for Code
- arxiv url: http://arxiv.org/abs/2502.07046v1
- Date: Mon, 10 Feb 2025 21:28:15 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-02-12 14:10:52.671788
- Title: SnipGen: A Mining Repository Framework for Evaluating LLMs for Code
- Title(参考訳): SnipGen: コードのためのLLMを評価するためのマイニングリポジトリフレームワーク
- Authors: Daniel Rodriguez-Cardenas, Alejandro Velasco, Denys Poshyvany,
- Abstract要約: 言語モデル(LLM)は、コードリポジトリを含む広範なデータセットに基づいてトレーニングされる。
それらの有効性を評価することは、トレーニングに使用されるデータセットと評価に使用されるデータセットとが重複する可能性があるため、大きな課題となる。
SnipGenは、コード生成のために、様々な下流タスクをまたいだ迅速なエンジニアリングを活用するように設計された包括的なリポジトリマイニングフレームワークである。
- 参考スコア(独自算出の注目度): 44.99833362998488
- License:
- Abstract: Language Models (LLMs), such as transformer-based neural networks trained on billions of parameters, have become increasingly prevalent in software engineering (SE). These models, trained on extensive datasets that include code repositories, exhibit remarkable capabilities for SE tasks. However, evaluating their effectiveness poses significant challenges, primarily due to the potential overlap between the datasets used for training and those employed for evaluation. To address this issue, we introduce SnipGen, a comprehensive repository mining framework designed to leverage prompt engineering across various downstream tasks for code generation. SnipGen aims to mitigate data contamination by generating robust testbeds and crafting tailored data points to assist researchers and practitioners in evaluating LLMs for code-related tasks. In our exploratory study, SnipGen mined approximately 227K data points from 338K recent code changes in GitHub commits, focusing on method-level granularity. SnipGen features a collection of prompt templates that can be combined to create a Chain-of-Thought-like sequence of prompts, enabling a nuanced assessment of LLMs' code generation quality. By providing the mining tool, the methodology, and the dataset, SnipGen empowers researchers and practitioners to rigorously evaluate and interpret LLMs' performance in software engineering contexts.
- Abstract(参考訳): 数十億のパラメータでトレーニングされたトランスフォーマーベースのニューラルネットワークのような言語モデル(LLM)は、ソフトウェア工学(SE)においてますます普及している。
これらのモデルは、コードリポジトリを含む広範なデータセットに基づいてトレーニングされ、SEタスクの素晴らしい機能を示す。
しかしながら、それらの有効性を評価することは、主にトレーニングに使用されるデータセットと評価に使用されるデータセットの重複により、大きな課題を引き起こす。
この問題に対処するために、コード生成のために様々な下流タスクをまたいだ迅速なエンジニアリングを活用するように設計された包括的なリポジトリマイニングフレームワークであるSnipGenを紹介します。
SnipGenは、堅牢なテストベッドを生成し、適切なデータポイントを作成して、研究者や実践者がコード関連のタスクにLLMを評価するのを支援することで、データの汚染を軽減することを目的としている。
探索的な調査で、SnipGenは、GitHubコミットの最近の338万のコード変更から約227万のデータポイントをマイニングし、メソッドレベルの粒度に焦点を当てた。
SnipGenには、Chain-of-Thoughtのようなプロンプトシーケンスを生成するために組み合わせられるプロンプトテンプレートのコレクションがあり、LLMのコード生成品質の微妙な評価を可能にする。
マイニングツール、方法論、データセットを提供することで、SnipGenは研究者や実践者がソフトウェア工学の文脈でLLMのパフォーマンスを厳格に評価し、解釈できるようにします。
関連論文リスト
- OpenCoder: The Open Cookbook for Top-Tier Code Large Language Models [70.72097493954067]
コードのための大規模言語モデル(LLM)は、コード生成、推論タスク、エージェントシステムなど、さまざまな領域で必須になっている。
オープンアクセスのコード LLM はプロプライエタリなモデルの性能レベルに近づきつつあるが、高品質なコード LLM は依然として限られている。
トップクラスのコードLLMであるOpenCoderは、主要なモデルに匹敵するパフォーマンスを達成するだけでなく、研究コミュニティの"オープンクックブック"としても機能します。
論文 参考訳(メタデータ) (2024-11-07T17:47:25Z) - Evaluation of Code LLMs on Geospatial Code Generation [1.6834474847800562]
大規模言語モデル(LLM)は、データサイエンスと機械学習アプリケーションのためのPythonコードを生成することができる。
本稿では,空間的タスクの選択に基づいて,コード生成モデルの評価ベンチマークを構築した。
我々のデータセットは、地理空間的コーディングタスクを高精度に解決できる新しいモデルの開発に貢献することを期待している。
論文 参考訳(メタデータ) (2024-10-06T20:34:03Z) - Genetic Instruct: Scaling up Synthetic Generation of Coding Instructions for Large Language Models [54.51932175059004]
本稿では,大規模言語モデルのコード生成能力を高めるために,合成命令を生成するスケーラブルな手法を提案する。
提案したアルゴリズムは進化過程を模倣し、自己インストラクションを利用して限られた数の種子から多数の合成サンプルを生成する。
論文 参考訳(メタデータ) (2024-07-29T20:42:59Z) - Code Less, Align More: Efficient LLM Fine-tuning for Code Generation with Data Pruning [4.975728472540823]
各種クラスタリングとプルーニングのメトリクスを統合して、生成されたコードの正確性や機能を損なうことなく、トレーニングデータを選択的に削減する手法を提案する。
実験により,これらのプルーニング戦略は,必要な計算資源を削減するだけでなく,全体的な品質コード生成を向上することが示された。
論文 参考訳(メタデータ) (2024-07-06T10:30:43Z) - A Survey on Large Language Models for Code Generation [9.555952109820392]
大規模言語モデル(LLM)は、様々なコード関連のタスクで顕著な進歩を遂げています。
本調査は、総合的かつ最新の文献レビューを提供することで、学界と実践的発展のギャップを埋めることを目的としている。
論文 参考訳(メタデータ) (2024-06-01T17:48:15Z) - CodecLM: Aligning Language Models with Tailored Synthetic Data [51.59223474427153]
命令追従能力のための高品質な合成データを適応的に生成するフレームワークであるCodecLMを紹介する。
まず、ターゲットの指示分布をキャプチャするために、オンザフライで生成された簡潔なキーワードであるメタデータにシード命令をエンコードする。
また、デコード中に自己論理とコントラストフィルタを導入し、データ効率の良いサンプルを調整する。
論文 参考訳(メタデータ) (2024-04-08T21:15:36Z) - StepCoder: Improve Code Generation with Reinforcement Learning from
Compiler Feedback [58.20547418182074]
2つの主要コンポーネントからなるコード生成の新しいフレームワークであるStepCoderを紹介します。
CCCSは、長いシーケンスのコード生成タスクをCurriculum of Code Completion Subtaskに分割することで、探索課題に対処する。
FGOは、未実行のコードセグメントをマスクすることでのみモデルを最適化し、Fine-Grained Optimizationを提供する。
提案手法は,出力空間を探索し,対応するベンチマークにおいて最先端の手法より優れた性能を発揮する。
論文 参考訳(メタデータ) (2024-02-02T13:14:31Z) - A Review of Repository Level Prompting for LLMs [0.0]
大規模言語モデル(LLM)は、HumanEvalベンチマークで94.6%の解決率を達成するなど、顕著な成功を収めている。
GitHub CopilotやTab Nineといったリポジトリレベルのインラインコード補完ツールの商用化が進んでいる。
本稿では,個々のコーディング問題からリポジトリスケールソリューションへの移行について述べる。
論文 参考訳(メタデータ) (2023-12-15T00:34:52Z) - CodeRL: Mastering Code Generation through Pretrained Models and Deep
Reinforcement Learning [92.36705236706678]
CodeRLは、事前訓練されたLMと深層強化学習によるプログラム合成タスクのための新しいフレームワークである。
推論中、我々は重要なサンプリング戦略を持つ新しい生成手順を導入する。
モデルバックボーンについては,CodeT5のエンコーダデコーダアーキテクチャを拡張し,学習目標を拡張した。
論文 参考訳(メタデータ) (2022-07-05T02:42:15Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。