論文の概要: OscNet: Machine Learning on CMOS Oscillator Networks
- arxiv url: http://arxiv.org/abs/2502.07192v1
- Date: Tue, 11 Feb 2025 02:32:32 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-02-12 14:07:48.161591
- Title: OscNet: Machine Learning on CMOS Oscillator Networks
- Title(参考訳): OscNet: CMOSオシレータネットワーク上の機械学習
- Authors: Wenxiao Cai, Thomas H. Lee,
- Abstract要約: 我々はCMOSネットワーク(OscNet)上に実装された新しいエネルギー効率のよい機械学習フレームワークを提案する。
我々は、OscNetを用いて出生前脳の視覚系の発達過程をモデル化し、生物学的にインスパイアされたヘビアン規則に基づいて更新する。
実験の結果、OscNet上のHebbianの学習パイプラインは、従来の機械学習アルゴリズムに匹敵する、あるいは超えるパフォーマンスを実現している。
- 参考スコア(独自算出の注目度): 0.0
- License:
- Abstract: Machine learning and AI have achieved remarkable advancements but at the cost of significant computational resources and energy consumption. This has created an urgent need for a novel, energy-efficient computational fabric to replace the current computing pipeline. Recently, a promising approach has emerged by mimicking spiking neurons in the brain and leveraging oscillators on CMOS for direct computation. In this context, we propose a new and energy efficient machine learning framework implemented on CMOS Oscillator Networks (OscNet). We model the developmental processes of the prenatal brain's visual system using OscNet, updating weights based on the biologically inspired Hebbian rule. This same pipeline is then directly applied to standard machine learning tasks. OscNet is a specially designed hardware and is inherently energy-efficient. Its reliance on forward propagation alone for training further enhances its energy efficiency while maintaining biological plausibility. Simulation validates our designs of OscNet architectures. Experimental results demonstrate that Hebbian learning pipeline on OscNet achieves performance comparable to or even surpassing traditional machine learning algorithms, highlighting its potential as a energy efficient and effective computational paradigm.
- Abstract(参考訳): 機械学習とAIは目覚ましい進歩を遂げているが、かなりの計算資源とエネルギー消費を犠牲にしている。
これにより、現在のコンピューティングパイプラインを置き換えるために、新しいエネルギー効率の高い計算ファブリックが緊急に必要になった。
近年、脳内のスパイクニューロンを模倣し、CMOS上の発振器を利用して直接計算することで、有望なアプローチが出現している。
本稿では,CMOS Oscillator Networks (OscNet) 上に実装された,新しいエネルギー効率の高い機械学習フレームワークを提案する。
我々は、OscNetを用いて出生前脳の視覚系の発達過程をモデル化し、生物学的にインスパイアされたヘビアン規則に基づいて重みを更新する。
このパイプラインはその後、標準的な機械学習タスクに直接適用される。
OscNetは特別に設計されたハードウェアであり、本質的にエネルギー効率が良い。
フォワード・プログレスのみを訓練に頼っていることは、生物の可視性を保ちながら、エネルギー効率をさらに高める。
シミュレーションはOscNetアーキテクチャの設計を検証する。
実験の結果、OscNet上のHebbianの学習パイプラインは、従来の機械学習アルゴリズムに匹敵するパフォーマンスを達成し、エネルギー効率と効率的な計算パラダイムとしての可能性を強調している。
関連論文リスト
- Solving Boltzmann Optimization Problems with Deep Learning [0.21485350418225244]
Isingモデルは、高エネルギー効率計算のための将来のフレームワークとして、特に有望であることを示している。
イジングシステムは、計算のエネルギー消費に対する熱力学的限界に近づくエネルギーで操作することができる。
Isingベースのハードウェアを作成する際の課題は、基本的な非決定論的ハードウェア上で正しい結果を生成する有用な回路を最適化することである。
論文 参考訳(メタデータ) (2024-01-30T19:52:02Z) - Machine Learning aided Computer Architecture Design for CNN Inferencing
Systems [0.0]
我々は,それぞれ5.03%,5.94%のMAPEを用いて,推論中のCNNのパワーと性能を予測する手法を開発した。
我々のアプローチは、コンピュータアーキテクトが開発初期段階のパワーと性能を見積もることを可能にし、多くのプロトタイプの必要性を減らします。
論文 参考訳(メタデータ) (2023-08-10T06:17:46Z) - Intelligence Processing Units Accelerate Neuromorphic Learning [52.952192990802345]
スパイキングニューラルネットワーク(SNN)は、エネルギー消費と遅延の観点から、桁違いに改善されている。
我々は、カスタムSNN PythonパッケージsnnTorchのIPU最適化リリースを提示する。
論文 参考訳(メタデータ) (2022-11-19T15:44:08Z) - Reservoir Memory Machines as Neural Computers [70.5993855765376]
微分可能なニューラルネットワークは、干渉することなく明示的なメモリで人工ニューラルネットワークを拡張する。
我々は、非常に効率的に訓練できるモデルを用いて、微分可能なニューラルネットワークの計算能力を実現する。
論文 参考訳(メタデータ) (2020-09-14T12:01:30Z) - Training End-to-End Analog Neural Networks with Equilibrium Propagation [64.0476282000118]
本稿では,勾配降下による終端から終端までのアナログニューラルネットワークの学習法を提案する。
数学的には、アナログニューラルネットワークのクラス(非線形抵抗性ネットワークと呼ばれる)がエネルギーベースモデルであることが示される。
我々の研究は、オンチップ学習をサポートする、超高速でコンパクトで低消費電力のニューラルネットワークの新世代の開発を導くことができる。
論文 参考訳(メタデータ) (2020-06-02T23:38:35Z) - One-step regression and classification with crosspoint resistive memory
arrays [62.997667081978825]
高速で低エネルギーのコンピュータは、エッジでリアルタイム人工知能を実現するために要求されている。
ワンステップ学習は、ボストンの住宅のコスト予測と、MNIST桁認識のための2層ニューラルネットワークのトレーニングによって支援される。
結果は、クロスポイントアレイ内の物理計算、並列計算、アナログ計算のおかげで、1つの計算ステップで得られる。
論文 参考訳(メタデータ) (2020-05-05T08:00:07Z) - Spiking Neural Networks Hardware Implementations and Challenges: a
Survey [53.429871539789445]
スパイキングニューラルネットワークは、ニューロンとシナプスの操作原理を模倣する認知アルゴリズムである。
スパイキングニューラルネットワークのハードウェア実装の現状について述べる。
本稿では,これらのイベント駆動アルゴリズムの特性をハードウェアレベルで活用するための戦略について論じる。
論文 参考訳(メタデータ) (2020-05-04T13:24:00Z) - Einsum Networks: Fast and Scalable Learning of Tractable Probabilistic
Circuits [99.59941892183454]
我々は,PC用の新しい実装設計であるEinsum Networks (EiNets)を提案する。
中心となるのは、E EiNets は単一のモノリシックな einsum-operation に多数の算術演算を組み合わせている。
本稿では,PCにおける予測最大化(EM)の実装を,自動微分を利用した簡易化が可能であることを示す。
論文 参考訳(メタデータ) (2020-04-13T23:09:15Z) - Learnergy: Energy-based Machine Learners [0.0]
ディープラーニングアーキテクチャの文脈では、機械学習技術が広く推奨されている。
制限ボルツマンマシン(Restricted Boltzmann Machine)と呼ばれるエキサイティングなアルゴリズムは、分類、再構成、画像と信号の生成など、最も多様な応用に取り組むために、エネルギーと確率に基づく性質に依存している。
論文 参考訳(メタデータ) (2020-03-16T21:14:32Z) - Resource-Efficient Neural Networks for Embedded Systems [23.532396005466627]
本稿では,機械学習技術の現状について概説する。
私たちは、過去10年で主要な機械学習モデルであるディープニューラルネットワーク(DNN)に基づく、リソース効率の高い推論に焦点を当てています。
我々は、圧縮技術を用いて、よく知られたベンチマークデータセットの実験で議論を裏付ける。
論文 参考訳(メタデータ) (2020-01-07T14:17:09Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。