Linear Transformers as VAR Models: Aligning Autoregressive Attention Mechanisms with Autoregressive Forecasting
- URL: http://arxiv.org/abs/2502.07244v1
- Date: Tue, 11 Feb 2025 04:24:43 GMT
- Title: Linear Transformers as VAR Models: Aligning Autoregressive Attention Mechanisms with Autoregressive Forecasting
- Authors: Jiecheng Lu, Shihao Yang,
- Abstract summary: We show that a single linear attention layer can be interpreted as a dynamic vector autoregressive ( VAR) structure.
By rearranging the generalization, attention, and input-output flow, multi-layer linear attention can also be aligned as a VAR model.
We propose Structural Aligned Mixture of VAR, a linear Transformer variant that integrates interpretable dynamic VAR weights for multivariate TSF.
- Score: 0.9361474110798144
- License:
- Abstract: Autoregressive attention-based time series forecasting (TSF) has drawn increasing interest, with mechanisms like linear attention sometimes outperforming vanilla attention. However, deeper Transformer architectures frequently misalign with autoregressive objectives, obscuring the underlying VAR structure embedded within linear attention and hindering their ability to capture the data generative processes in TSF. In this work, we first show that a single linear attention layer can be interpreted as a dynamic vector autoregressive (VAR) structure. We then explain that existing multi-layer Transformers have structural mismatches with the autoregressive forecasting objective, which impair interpretability and generalization ability. To address this, we show that by rearranging the MLP, attention, and input-output flow, multi-layer linear attention can also be aligned as a VAR model. Then, we propose Structural Aligned Mixture of VAR (SAMoVAR), a linear Transformer variant that integrates interpretable dynamic VAR weights for multivariate TSF. By aligning the Transformer architecture with autoregressive objectives, SAMoVAR delivers improved performance, interpretability, and computational efficiency, comparing to SOTA TSF models.
Related papers
- Interpreting Affine Recurrence Learning in GPT-style Transformers [54.01174470722201]
In-context learning allows GPT-style transformers to generalize during inference without modifying their weights.
This paper focuses specifically on their ability to learn and predict affine recurrences as an ICL task.
We analyze the model's internal operations using both empirical and theoretical approaches.
arXiv Detail & Related papers (2024-10-22T21:30:01Z) - Training Dynamics of Transformers to Recognize Word Co-occurrence via Gradient Flow Analysis [97.54180451650122]
We study the dynamics of training a shallow transformer on a task of recognizing co-occurrence of two designated words.
We analyze the gradient flow dynamics of simultaneously training three attention matrices and a linear layer.
We prove a novel property of the gradient flow, termed textitautomatic balancing of gradients, which enables the loss values of different samples to decrease almost at the same rate and further facilitates the proof of near minimum training loss.
arXiv Detail & Related papers (2024-10-12T17:50:58Z) - WAVE: Weighted Autoregressive Varying Gate for Time Series Forecasting [9.114664059026767]
We propose a weighted Autoregressive Varying gatE attention mechanism equipped with both Autoregressive (AR) and Moving-average (MA) components.
It can adapt to various attention mechanisms, enhancing and decoupling their ability to capture long-range and local temporal patterns in time series data.
arXiv Detail & Related papers (2024-10-04T05:45:50Z) - PRformer: Pyramidal Recurrent Transformer for Multivariate Time Series Forecasting [82.03373838627606]
Self-attention mechanism in Transformer architecture requires positional embeddings to encode temporal order in time series prediction.
We argue that this reliance on positional embeddings restricts the Transformer's ability to effectively represent temporal sequences.
We present a model integrating PRE with a standard Transformer encoder, demonstrating state-of-the-art performance on various real-world datasets.
arXiv Detail & Related papers (2024-08-20T01:56:07Z) - Crossfusor: A Cross-Attention Transformer Enhanced Conditional Diffusion Model for Car-Following Trajectory Prediction [10.814758830775727]
This study introduces a Cross-Attention Transformer Enhanced Diffusion Model (Crossfusor) specifically designed for car-following trajectory prediction.
It integrates detailed inter-vehicular interactions and car-following dynamics into a robust diffusion framework, improving both the accuracy and realism of predicted trajectories.
Experimental results on the NGSIM dataset demonstrate that Crossfusor outperforms state-of-the-art models, particularly in long-term predictions.
arXiv Detail & Related papers (2024-06-17T17:35:47Z) - Skip-Layer Attention: Bridging Abstract and Detailed Dependencies in Transformers [56.264673865476986]
This paper introduces Skip-Layer Attention (SLA) to enhance Transformer models.
SLA improves the model's ability to capture dependencies between high-level abstract features and low-level details.
Our implementation extends the Transformer's functionality by enabling queries in a given layer to interact with keys and values from both the current layer and one preceding layer.
arXiv Detail & Related papers (2024-06-17T07:24:38Z) - Self-Supervised Pre-Training for Table Structure Recognition Transformer [25.04573593082671]
We propose a self-supervised pre-training (SSP) method for table structure recognition transformers.
We discover that the performance gap between the linear projection transformer and the hybrid CNN-transformer can be mitigated by SSP of the visual encoder in the TSR model.
arXiv Detail & Related papers (2024-02-23T19:34:06Z) - Multi-Objective Decision Transformers for Offline Reinforcement Learning [7.386356540208436]
offline RL is structured to derive policies from static trajectory data without requiring real-time environment interactions.
We reformulate offline RL as a multi-objective optimization problem, where prediction is extended to states and returns.
Our experiments on D4RL benchmark locomotion tasks reveal that our propositions allow for more effective utilization of the attention mechanism in the transformer model.
arXiv Detail & Related papers (2023-08-31T00:47:58Z) - Optimizing Non-Autoregressive Transformers with Contrastive Learning [74.46714706658517]
Non-autoregressive Transformers (NATs) reduce the inference latency of Autoregressive Transformers (ATs) by predicting words all at once rather than in sequential order.
In this paper, we propose to ease the difficulty of modality learning via sampling from the model distribution instead of the data distribution.
arXiv Detail & Related papers (2023-05-23T04:20:13Z) - Towards Long-Term Time-Series Forecasting: Feature, Pattern, and
Distribution [57.71199089609161]
Long-term time-series forecasting (LTTF) has become a pressing demand in many applications, such as wind power supply planning.
Transformer models have been adopted to deliver high prediction capacity because of the high computational self-attention mechanism.
We propose an efficient Transformerbased model, named Conformer, which differentiates itself from existing methods for LTTF in three aspects.
arXiv Detail & Related papers (2023-01-05T13:59:29Z) - Masked Language Modeling for Proteins via Linearly Scalable Long-Context
Transformers [42.93754828584075]
We present a new Transformer architecture, Performer, based on Fast Attention Via Orthogonal Random features (FAVOR)
Our mechanism scales linearly rather than quadratically in the number of tokens in the sequence, is characterized by sub-quadratic space complexity and does not incorporate any sparsity pattern priors.
It provides strong theoretical guarantees: unbiased estimation of the attention matrix and uniform convergence.
arXiv Detail & Related papers (2020-06-05T17:09:16Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.