Spatial Degradation-Aware and Temporal Consistent Diffusion Model for Compressed Video Super-Resolution
- URL: http://arxiv.org/abs/2502.07381v2
- Date: Wed, 12 Feb 2025 07:37:30 GMT
- Title: Spatial Degradation-Aware and Temporal Consistent Diffusion Model for Compressed Video Super-Resolution
- Authors: Hongyu An, Xinfeng Zhang, Shijie Zhao, Li Zhang,
- Abstract summary: Video super-resolution (VSR) is an efficient technique to enhance video, but relatively VSR methods focus on compressed videos.<n>We propose a novel Spatial Degradation-Aware and Temporal Consistent (ATC) diffusion model for compressed VSR.
- Score: 13.103621878352314
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Due to limitations of storage and bandwidth, videos stored and transmitted on the Internet are usually low-quality with low-resolution and compression noise. Although video super-resolution (VSR) is an efficient technique to enhance video resolution, relatively VSR methods focus on compressed videos. Directly applying general VSR approaches leads to the failure of improving practical videos, especially when frames are highly compressed at a low bit rate. Recently, diffusion models have achieved superior performance in low-level visual tasks, and their high-realism generation capability enables them to be applied in VSR. To synthesize more compression-lost details and refine temporal consistency, we propose a novel Spatial Degradation-Aware and Temporal Consistent (SDATC) diffusion model for compressed VSR. Specifically, we introduce a distortion Control module (DCM) to modulate diffusion model inputs and guide the generation. Next, the diffusion model executes the denoising process for texture generation with fine-tuned spatial prompt-based compression-aware module (PCAM) and spatio-temporal attention module (STAM). PCAM extracts features to encode specific compression information dynamically. STAM extends the spatial attention mechanism to a spatio-temporal dimension for capturing temporal correlation. Extensive experimental results on benchmark datasets demonstrate the effectiveness of the proposed modules in enhancing compressed videos.
Related papers
- Embedding Compression Distortion in Video Coding for Machines [67.97469042910855]
Currently, video transmission serves not only the Human Visual System (HVS) for viewing but also machine perception for analysis.
We propose a Compression Distortion Embedding (CDRE) framework, which extracts machine-perception-related distortion representation and embeds it into downstream models.
Our framework can effectively boost the rate-task performance of existing codecs with minimal overhead in terms of execution time, and number of parameters.
arXiv Detail & Related papers (2025-03-27T13:01:53Z) - REGEN: Learning Compact Video Embedding with (Re-)Generative Decoder [52.698595889988766]
We present a novel perspective on learning video embedders for generative modeling.
Rather than requiring an exact reproduction of an input video, an effective embedder should focus on visually plausible reconstructions.
We propose replacing the conventional encoder-decoder video embedder with an encoder-generator framework.
arXiv Detail & Related papers (2025-03-11T17:51:07Z) - Rethinking Video Tokenization: A Conditioned Diffusion-based Approach [58.164354605550194]
New tokenizer, Diffusion Conditioned-based Gene Tokenizer, replaces GAN-based decoder with conditional diffusion model.
We trained using only a basic MSE diffusion loss for reconstruction, along with KL term and LPIPS perceptual loss from scratch.
Even a scaled-down version of CDT (3$times inference speedup) still performs comparably with top baselines.
arXiv Detail & Related papers (2025-03-05T17:59:19Z) - FCVSR: A Frequency-aware Method for Compressed Video Super-Resolution [26.35492218473007]
We propose a deep frequency-based compressed video SR model (FCVSR) consisting of a motion-guided adaptive alignment network and a multi-frequency feature refinement module.<n>The proposed model has been evaluated on three compressed video compressed super-resolution datasets.
arXiv Detail & Related papers (2025-02-10T13:08:57Z) - Diffusion-based Perceptual Neural Video Compression with Temporal Diffusion Information Reuse [45.134271969594614]
DiffVC is a diffusion-based perceptual neural video compression framework.
It integrates foundational diffusion model with the video conditional coding paradigm.
We show that our proposed solution delivers excellent performance in both perception metrics and visual quality.
arXiv Detail & Related papers (2025-01-23T10:23:04Z) - Progressive Growing of Video Tokenizers for Highly Compressed Latent Spaces [20.860632218272094]
Video tokenizers are essential for latent video diffusion models, converting raw video data into latent spaces for efficient training.<n>We propose an alternative approach to enhance temporal compression.<n>We develop a bootstrapped high-temporal-compression model that progressively trains high-compression blocks atop well-trained lower-compression models.
arXiv Detail & Related papers (2025-01-09T18:55:15Z) - VRVVC: Variable-Rate NeRF-Based Volumetric Video Compression [59.14355576912495]
NeRF-based video has revolutionized visual media by delivering photorealistic Free-Viewpoint Video (FVV) experiences.<n>The substantial data volumes pose significant challenges for storage and transmission.<n>We propose VRVVC, a novel end-to-end joint variable-rate framework for video compression.
arXiv Detail & Related papers (2024-12-16T01:28:04Z) - Collaborative Feedback Discriminative Propagation for Video Super-Resolution [66.61201445650323]
Key success of video super-resolution (VSR) methods stems mainly from exploring spatial and temporal information.
Inaccurate alignment usually leads to aligned features with significant artifacts.
propagation modules only propagate the same timestep features forward or backward.
arXiv Detail & Related papers (2024-04-06T22:08:20Z) - Learning Spatial Adaptation and Temporal Coherence in Diffusion Models for Video Super-Resolution [151.1255837803585]
We propose a novel approach, pursuing Spatial Adaptation and Temporal Coherence (SATeCo) for video super-resolution.
SATeCo pivots on learning spatial-temporal guidance from low-resolution videos to calibrate both latent-space high-resolution video denoising and pixel-space video reconstruction.
Experiments conducted on the REDS4 and Vid4 datasets demonstrate the effectiveness of our approach.
arXiv Detail & Related papers (2024-03-25T17:59:26Z) - Scene Matters: Model-based Deep Video Compression [13.329074811293292]
We propose a model-based video compression (MVC) framework that regards scenes as the fundamental units for video sequences.
Our proposed MVC directly models novel intensity variation of the entire video sequence in one scene, seeking non-redundant representations instead of reducing redundancy.
Our method achieves up to a 20% reduction compared to the latest video standard H.266 and is more efficient in decoding than existing video coding strategies.
arXiv Detail & Related papers (2023-03-08T13:15:19Z) - Learned Video Compression via Heterogeneous Deformable Compensation
Network [78.72508633457392]
We propose a learned video compression framework via heterogeneous deformable compensation strategy (HDCVC) to tackle the problems of unstable compression performance.
More specifically, the proposed algorithm extracts features from the two adjacent frames to estimate content-Neighborhood heterogeneous deformable (HetDeform) kernel offsets.
Experimental results indicate that HDCVC achieves superior performance than the recent state-of-the-art learned video compression approaches.
arXiv Detail & Related papers (2022-07-11T02:31:31Z) - COMISR: Compression-Informed Video Super-Resolution [76.94152284740858]
Most videos on the web or mobile devices are compressed, and the compression can be severe when the bandwidth is limited.
We propose a new compression-informed video super-resolution model to restore high-resolution content without introducing artifacts caused by compression.
arXiv Detail & Related papers (2021-05-04T01:24:44Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.