論文の概要: Diffusion-LAM: Probabilistic Limited Area Weather Forecasting with Diffusion
- arxiv url: http://arxiv.org/abs/2502.07532v1
- Date: Tue, 11 Feb 2025 13:15:16 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-02-12 14:06:00.622726
- Title: Diffusion-LAM: Probabilistic Limited Area Weather Forecasting with Diffusion
- Title(参考訳): 拡散-LAM:拡散を伴う確率的限定地域気象予報
- Authors: Erik Larsson, Joel Oskarsson, Tomas Landelius, Fredrik Lindsten,
- Abstract要約: 条件拡散を利用した確率的限定地域気象モデルであるDiffusion-LAMを導入する。
周辺地域の境界データの条件付けにより, 本手法は定義領域内における予測を生成する。
MEPSリミテッド領域データセットの実験結果は、拡散LAMが正確な確率予測をもたらす可能性を実証している。
- 参考スコア(独自算出の注目度): 10.905169282633256
- License:
- Abstract: Machine learning methods have been shown to be effective for weather forecasting, based on the speed and accuracy compared to traditional numerical models. While early efforts primarily concentrated on deterministic predictions, the field has increasingly shifted toward probabilistic forecasting to better capture the forecast uncertainty. Most machine learning-based models have been designed for global-scale predictions, with only limited work targeting regional or limited area forecasting, which allows more specialized and flexible modeling for specific locations. This work introduces Diffusion-LAM, a probabilistic limited area weather model leveraging conditional diffusion. By conditioning on boundary data from surrounding regions, our approach generates forecasts within a defined area. Experimental results on the MEPS limited area dataset demonstrate the potential of Diffusion-LAM to deliver accurate probabilistic forecasts, highlighting its promise for limited-area weather prediction.
- Abstract(参考訳): 機械学習手法は、従来の数値モデルと比較して、速度と精度に基づいて天気予報に有効であることが示されている。
初期の取り組みは主に決定論的な予測に集中していたが、予測の不確実性をよりよく捉えるために、確率的予測(probabilistic forecasting)に移行した。
ほとんどの機械学習ベースのモデルはグローバルな予測のために設計されており、特定の場所のより専門的で柔軟なモデリングを可能にする地域または限られた領域の予測のみを対象としている。
条件拡散を利用した確率的限定地域気象モデルであるDiffusion-LAMを導入する。
周辺地域の境界データの条件付けにより, 本手法は定義領域内における予測を生成する。
MEPSリミテッド・エリア・データセットの実験結果は、ディフュージョン・LAMが正確な確率予測を提供する可能性を示し、限られた領域の天気予報の可能性を浮き彫りにした。
関連論文リスト
- Efficient Localized Adaptation of Neural Weather Forecasting: A Case Study in the MENA Region [62.09891513612252]
地域レベルのダウンストリームタスクに特化して、リミテッド・エリア・モデリングに焦点を合わせ、モデルをトレーニングします。
我々は,気象予報が水資源の管理,農業,極度の気象事象の影響軽減に重要であるという,気象学的課題からMENA地域を考察する。
本研究では,パラメータ効率のよい微調整手法,特にローランド適応(LoRA)とその変種を統合することの有効性を検証することを目的とした。
論文 参考訳(メタデータ) (2024-09-11T19:31:56Z) - Weather Prediction with Diffusion Guided by Realistic Forecast Processes [49.07556359513563]
気象予報に拡散モデル(DM)を適用した新しい手法を提案する。
提案手法は,同一のモデリングフレームワークを用いて,直接予測と反復予測の両方を実現できる。
我々のモデルの柔軟性と制御性は、一般の気象コミュニティにとってより信頼性の高いDLシステムに力を与えます。
論文 参考訳(メタデータ) (2024-02-06T21:28:42Z) - ExtremeCast: Boosting Extreme Value Prediction for Global Weather Forecast [57.6987191099507]
非対称な最適化を行い、極端な天気予報を得るために極端な値を強調する新しい損失関数であるExlossを導入する。
また,複数のランダムサンプルを用いて予測結果の不確かさをキャプチャするExBoosterについても紹介する。
提案手法は,上位中距離予測モデルに匹敵する全体的な予測精度を維持しつつ,極端気象予測における最先端性能を達成することができる。
論文 参考訳(メタデータ) (2024-02-02T10:34:13Z) - Deterministic Guidance Diffusion Model for Probabilistic Weather
Forecasting [16.370286635698903]
textbftextitDeterministic textbftextitGuidance textbftextitDiffusion textbftextitModel (DGDM)を導入する。
論文 参考訳(メタデータ) (2023-12-05T15:03:15Z) - Performative Time-Series Forecasting [71.18553214204978]
我々は,機械学習の観点から,パフォーマンス時系列予測(PeTS)を定式化する。
本稿では,予測分布シフトに対する遅延応答の概念を活用する新しい手法であるFeature Performative-Shifting(FPS)を提案する。
新型コロナウイルスの複数の時系列モデルと交通予報タスクを用いた総合的な実験を行った。
論文 参考訳(メタデータ) (2023-10-09T18:34:29Z) - Precipitation nowcasting with generative diffusion models [0.0]
降水処理における拡散モデルの有効性について検討した。
本研究は, 確立されたU-Netモデルの性能と比較したものである。
論文 参考訳(メタデータ) (2023-08-13T09:51:16Z) - PreDiff: Precipitation Nowcasting with Latent Diffusion Models [28.52267957954304]
確率的予測が可能な条件付き潜伏拡散モデルを開発した。
予測をドメイン固有の物理的制約と整合させるために、明示的な知識アライメント機構を組み込んだ。
論文 参考訳(メタデータ) (2023-07-19T19:19:13Z) - SEEDS: Emulation of Weather Forecast Ensembles with Diffusion Models [13.331224394143117]
不確かさの定量化は意思決定に不可欠である。
天気予報の不確実性を表す主要なアプローチは、予測の集合を生成することです。
本稿では,これらの予測を歴史的データから学習した深部生成拡散モデルを用いてエミュレートし,計算コストを補正することを提案する。
論文 参考訳(メタデータ) (2023-06-24T22:00:06Z) - Diffusion Models for High-Resolution Solar Forecasts [0.0]
スコアベース拡散モデルは、多くの依存変数上の確率分布をモデル化するための新しいアプローチを提供する。
本手法は,超解速気象予測のための拡散モデルから多くの試料を発生させることにより,日頭太陽照度予測に適用する。
論文 参考訳(メタデータ) (2023-02-01T01:32:25Z) - Uncertainty estimation of pedestrian future trajectory using Bayesian
approximation [137.00426219455116]
動的トラフィックシナリオでは、決定論的予測に基づく計画は信頼できない。
著者らは、決定論的アプローチが捉えられない近似を用いて予測中の不確実性を定量化する。
将来の状態の不確実性に対する降雨重量と長期予測の影響について検討した。
論文 参考訳(メタデータ) (2022-05-04T04:23:38Z) - Learning Interpretable Deep State Space Model for Probabilistic Time
Series Forecasting [98.57851612518758]
確率的時系列予測は、その歴史に基づいて将来の分布を推定する。
本稿では,非線形エミッションモデルと遷移モデルとをネットワークによってパラメータ化した,確率的時系列予測のための深部状態空間モデルを提案する。
実験では,我々のモデルが正確かつ鋭い確率予測を生成することを示す。
論文 参考訳(メタデータ) (2021-01-31T06:49:33Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。