論文の概要: Cheap Permutation Testing
- arxiv url: http://arxiv.org/abs/2502.07672v1
- Date: Tue, 11 Feb 2025 16:19:07 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-02-12 14:06:26.474851
- Title: Cheap Permutation Testing
- Title(参考訳): Cheap Permutation Testing
- Authors: Carles Domingo-Enrich, Raaz Dwivedi, Lester Mackey,
- Abstract要約: 置換テストは、分散を区別し、独立性をテストするための一般的な選択である。
標準的な置換テストも高価であり、テスト統計を数百から数千回計算する必要がある。
この作業では、データポイントをビンにグループ化し、それらのビンのみをパーミュレートする、テストの高速化のためのシンプルなアプローチを提供します。
- 参考スコア(独自算出の注目度): 34.48696502346266
- License:
- Abstract: Permutation tests are a popular choice for distinguishing distributions and testing independence, due to their exact, finite-sample control of false positives and their minimax optimality when paired with U-statistics. However, standard permutation tests are also expensive, requiring a test statistic to be computed hundreds or thousands of times to detect a separation between distributions. In this work, we offer a simple approach to accelerate testing: group your datapoints into bins and permute only those bins. For U and V-statistics, we prove that these cheap permutation tests have two remarkable properties. First, by storing appropriate sufficient statistics, a cheap test can be run in time comparable to evaluating a single test statistic. Second, cheap permutation power closely approximates standard permutation power. As a result, cheap tests inherit the exact false positive control and minimax optimality of standard permutation tests while running in a fraction of the time. We complement these findings with improved power guarantees for standard permutation testing and experiments demonstrating the benefits of cheap permutations over standard maximum mean discrepancy (MMD), Hilbert-Schmidt independence criterion (HSIC), random Fourier feature, Wilcoxon-Mann-Whitney, cross-MMD, and cross-HSIC tests.
- Abstract(参考訳): 置換テストは、偽陽性の正確な有限サンプル制御とU統計と組み合わせた際の最小値最適性のため、分布を区別し、独立性をテストするための一般的な選択である。
しかし、標準的な置換テストも高価であり、分散の分離を検出するために数百から数千回、テスト統計を計算する必要がある。
この作業では、データポイントをビンにグループ化し、それらのビンのみをパーミュレートする、テストの高速化のためのシンプルなアプローチを提供します。
U と V の統計学では、これらの安価な置換試験は2つの顕著な性質を持つことを示す。
まず、適切な十分な統計情報を格納することで、単一のテスト統計値と同等の時間で、安価なテストを実行することができる。
第二に、安価な置換パワーは標準置換パワーを近似する。
結果として、安価なテストは、わずかな時間で実行しながら、正確な偽陽性制御と標準置換テストの極小最適性を継承する。
本研究は,標準変分法(MMD),ヒルベルト・シュミット独立基準(HSIC),ランダムフーリエ特徴,ウィルコクソン・マン・ホイットニー,クロスMMD,クロスHSICテストに対する安価な変分法の利点を示す実験,および標準変分法試験の改善による電力保証を補完する。
関連論文リスト
- Precise Error Rates for Computationally Efficient Testing [75.63895690909241]
本稿では,計算複雑性に着目した単純な対数-単純仮説テストの問題を再考する。
線形スペクトル統計に基づく既存の試験は、I型とII型の誤差率の間の最良のトレードオフ曲線を達成する。
論文 参考訳(メタデータ) (2023-11-01T04:41:16Z) - Spectral Regularized Kernel Two-Sample Tests [7.915420897195129]
MMD (maximum mean discrepancy) two-sample test to be optimal to the terms of the separation boundary in the Hellinger distance。
スペクトル正則化に基づくMDD試験の修正を提案し,MMD試験よりも分離境界が小さく,最小限の試験が最適であることを証明した。
その結果,テストしきい値がエレガントに選択されるテストの置換変種が,サンプルの置換によって決定されることがわかった。
論文 参考訳(メタデータ) (2022-12-19T00:42:21Z) - A Permutation-Free Kernel Independence Test [36.50719125230106]
非パラメトリック独立試験では、i.d. data $(X_i,Y_i)_i=1n$, where $X in MathcalX, Y in MathcalY$ is in any general space。
カーネルHilbert-Schmidt Independence Criterion (HSIC) や Distance Covariance (dCov) のような現代のテスト統計は、基礎となるU統計の縮退により、難解なnull分布を持つ。
本稿では,HSICの簡易かつ非自明な修正について述べる。
論文 参考訳(メタデータ) (2022-12-18T15:28:16Z) - A Permutation-free Kernel Two-Sample Test [36.50719125230106]
サンプル分割と学生化に基づく2次時間MDDテスト統計法を提案する。
大きなサンプルサイズの場合、我々の新しいクロスMMDはMDDよりも大幅にスピードアップし、わずかに電力を消費するだけである。
論文 参考訳(メタデータ) (2022-11-27T18:15:52Z) - Sequential Permutation Testing of Random Forest Variable Importance
Measures [68.8204255655161]
そこで本研究では、逐次置換テストと逐次p値推定を用いて、従来の置換テストに関連する高い計算コストを削減することを提案する。
シミュレーション研究の結果、シーケンシャルテストの理論的性質が当てはまることを確認した。
本手法の数値安定性を2つの応用研究で検討した。
論文 参考訳(メタデータ) (2022-06-02T20:16:50Z) - Exact Paired-Permutation Testing for Structured Test Statistics [67.71280539312536]
構造化されたテスト統計群のペア置換テストに対して,効率的な正確なアルゴリズムを提案する。
我々の正確なアルゴリズムはモンテカルロ近似よりも10ドル速く、共通のデータセットに20000ドルのサンプルがある。
論文 参考訳(メタデータ) (2022-05-03T11:00:59Z) - Optimal Testing of Discrete Distributions with High Probability [49.19942805582874]
高確率状態に着目して離散分布を試験する問題について検討する。
一定の要素でサンプル最適である近接性および独立性テストのための最初のアルゴリズムを提供する。
論文 参考訳(メタデータ) (2020-09-14T16:09:17Z) - Noisy Adaptive Group Testing using Bayesian Sequential Experimental
Design [63.48989885374238]
病気の感染頻度が低い場合、Dorfman氏は80年前に、人のテストグループは個人でテストするよりも効率が良いことを示した。
本研究の目的は,ノイズの多い環境で動作可能な新しいグループテストアルゴリズムを提案することである。
論文 参考訳(メタデータ) (2020-04-26T23:41:33Z) - The Chi-Square Test of Distance Correlation [7.748852202364896]
チ二乗検定は非パラメトリックであり、非常に高速であり、強い負のタイプ計量または特徴核を用いてバイアス補正された距離相関に適用できる。
基礎となるカイ二乗分布は上尾部の制限零分布をよく近似し支配しており、カイ二乗試験が独立性テストに有効で一貫性があることを証明している。
論文 参考訳(メタデータ) (2019-12-27T15:16:40Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。