論文の概要: HiPoNet: A Multi-View Simplicial Complex Network for High Dimensional Point-Cloud and Single-Cell Data
- arxiv url: http://arxiv.org/abs/2502.07746v2
- Date: Mon, 26 May 2025 21:37:22 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-05-28 14:37:19.173248
- Title: HiPoNet: A Multi-View Simplicial Complex Network for High Dimensional Point-Cloud and Single-Cell Data
- Title(参考訳): HiPoNet: 高次元ポイントクラウドとシングルセルデータのためのマルチビュー簡易複雑ネットワーク
- Authors: Siddharth Viswanath, Hiren Madhu, Dhananjay Bhaskar, Jake Kovalic, David R Johnson, Christopher Tape, Ian Adelstein, Rex Ying, Michael Perlmutter, Smita Krishnaswamy,
- Abstract要約: HiPoNetは、高次元の点雲上での回帰、分類、表現学習のためのエンドツーエンドの微分可能なニューラルネットワークである。
HiPoNetは単一セルデータ上で他のポイントクラウドやグラフベースのモデルよりも優れていることを示す。
また、空間座標をビューの1つとして用いた空間転写学データセットにHiPoNetを適用した。
- 参考スコア(独自算出の注目度): 13.847283649760282
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: In this paper, we propose HiPoNet, an end-to-end differentiable neural network for regression, classification, and representation learning on high-dimensional point clouds. Our work is motivated by single-cell data which can have very high-dimensionality --exceeding the capabilities of existing methods for point clouds which are mostly tailored for 3D data. Moreover, modern single-cell and spatial experiments now yield entire cohorts of datasets (i.e., one data set for every patient), necessitating models that can process large, high-dimensional point-clouds at scale. Most current approaches build a single nearest-neighbor graph, discarding important geometric and topological information. In contrast, HiPoNet models the point-cloud as a set of higher-order simplicial complexes, with each particular complex being created using a reweighting of features. This method thus generates multiple constructs corresponding to different views of high-dimensional data, which in biology offers the possibility of disentangling distinct cellular processes. It then employs simplicial wavelet transforms to extract multiscale features, capturing both local and global topology from each view. We show that geometric and topological information is preserved in this framework both theoretically and empirically. We showcase the utility of HiPoNet on point-cloud level tasks, involving classification and regression of entire point-clouds in data cohorts. Experimentally, we find that HiPoNet outperforms other point-cloud and graph-based models on single-cell data. We also apply HiPoNet to spatial transcriptomics datasets using spatial coordinates as one of the views. Overall, HiPoNet offers a robust and scalable solution for high-dimensional data analysis.
- Abstract(参考訳): 本稿では,高次元点雲上での回帰,分類,表現学習のための,エンドツーエンドで微分可能なニューラルネットワークであるHiPoNetを提案する。
私たちの研究は、非常に高次元性を持つシングルセルデータによって動機付けられています。
さらに、現代の単細胞および空間実験は、大規模で高次元の点雲を大規模に処理できるモデルを必要とするデータセットの全コホート(すなわち、患者の1つのデータセット)を生成する。
現在のほとんどのアプローチは、重要な幾何学的および位相的情報を捨て、隣り合う1つのグラフを構築している。
対照的にHiPoNetは、ポイントクラウドを高階simplicialコンプレックスの集合としてモデル化し、各コンプレックスは機能の重み付けを使用して作成される。
この方法では、高次元データの異なるビューに対応する複数の構造体が生成され、生物学において、異なる細胞プロセスが切り離される可能性がある。
次に、単純なウェーブレット変換を用いてマルチスケールの特徴を抽出し、各ビューから局所的および大域的トポロジーをキャプチャする。
幾何学的・トポロジカルな情報が理論的・経験的にこの枠組みに保存されていることを示す。
我々は、データコホートにおけるポイントクラウド全体の分類と回帰を含む、ポイントクラウドレベルのタスクにおけるHiPoNetの有用性について紹介する。
実験により,HiPoNetは単一セルデータ上で他の点クラウドやグラフベースのモデルよりも優れていることがわかった。
また、空間座標をビューの1つとして用いた空間転写学データセットにHiPoNetを適用した。
HiPoNetは、高次元データ分析のための堅牢でスケーラブルなソリューションを提供する。
関連論文リスト
- PointVoxelFormer -- Reviving point cloud networks for 3D medical imaging [0.0]
点雲は、医療画像における体積データを表現するための非常に効率的な方法である。
それらの利点にもかかわらず、ポイントクラウドは、ボリューム3D CNNやビジョントランスフォーマーと比較して、医療画像においてまだ過小評価されている。
この研究は、ポイントワイズ演算と中間微分可能化と高密度局所化CNNを組み合わせたハイブリッドアプローチを示す。
論文 参考訳(メタデータ) (2024-12-23T08:43:39Z) - PointeNet: A Lightweight Framework for Effective and Efficient Point
Cloud Analysis [28.54939134635978]
PointeNetは、ポイントクラウド分析に特化したネットワークである。
本手法は,分類/分割ヘッドとシームレスに統合したり,市販の3Dオブジェクト検出ネットワークに埋め込んだりすることで,柔軟性を示す。
ModelNet40、ScanObjectNN、ShapeNet KITTI、およびシーンレベルのデータセットKITTIを含むオブジェクトレベルのデータセットの実験は、ポイントクラウド分析における最先端メソッドよりもPointeNetの方が優れたパフォーマンスを示している。
論文 参考訳(メタデータ) (2023-12-20T03:34:48Z) - Patch-Wise Point Cloud Generation: A Divide-and-Conquer Approach [83.05340155068721]
分割・分散アプローチを用いた新しい3dポイントクラウド生成フレームワークを考案する。
すべてのパッチジェネレータは学習可能な事前情報に基づいており、幾何学的プリミティブの情報を取得することを目的としている。
最も人気のあるポイントクラウドデータセットであるShapeNetのさまざまなオブジェクトカテゴリに関する実験結果は、提案したパッチワイドポイントクラウド生成の有効性を示している。
論文 参考訳(メタデータ) (2023-07-22T11:10:39Z) - Low-Resource White-Box Semantic Segmentation of Supporting Towers on 3D
Point Clouds via Signature Shape Identification [52.77024349608834]
SCENE-Netは3Dポイントクラウドセマンティックセグメンテーションのための低リソースのホワイトボックスモデルである。
ラップトップでのトレーニング時間は85分、推論時間は20ミリ秒です。
40000 Kmというラベル付きラベル付きデータセットを、農村の地形点雲とコード実装のデータセットとしてリリースしています。
論文 参考訳(メタデータ) (2023-06-13T14:36:06Z) - Dynamic Clustering Transformer Network for Point Cloud Segmentation [23.149220817575195]
動的クラスタリングトランスネットワーク(DCTNet)と呼ばれる新しい3Dポイントクラウド表現ネットワークを提案する。
エンコーダ-デコーダアーキテクチャがあり、ローカルとグローバルの両方の機能学習が可能である。
提案手法は,オブジェクトベースデータセット(ShapeNet),都市ナビゲーションデータセット(Toronto-3D),マルチスペクトルLiDARデータセットを用いて評価した。
論文 参考訳(メタデータ) (2023-05-30T01:11:05Z) - Variational Relational Point Completion Network for Robust 3D
Classification [59.80993960827833]
可変点雲補完法は、局所的な詳細を欠くため、大域的な形状の骨格を生成する傾向がある。
本稿では2つの魅力的な特性を持つ変分フレームワークであるポイントコンプリートネットワーク(VRCNet)を提案する。
VRCNetは、現実世界のポイントクラウドスキャンにおいて、非常に一般化性と堅牢性を示している。
論文 参考訳(メタデータ) (2023-04-18T17:03:20Z) - GFNet: Geometric Flow Network for 3D Point Cloud Semantic Segmentation [91.15865862160088]
本稿では,異なるビュー間の幾何対応性を検討するための幾何フローネットワーク (GFNet) を提案する。
具体的には、異なる視点にまたがって補完情報を双方向に整列し、伝播する新しい幾何フローモジュール(GFM)を考案する。
論文 参考訳(メタデータ) (2022-07-06T11:48:08Z) - Learning Semantic Segmentation of Large-Scale Point Clouds with Random
Sampling [52.464516118826765]
我々はRandLA-Netを紹介した。RandLA-Netは、大規模ポイントクラウドのポイントごとの意味を推論する、効率的で軽量なニューラルネットワークアーキテクチャである。
我々のアプローチの鍵は、より複雑な点選択アプローチではなく、ランダムな点サンプリングを使用することである。
我々のRandLA-Netは、既存のアプローチよりも最大200倍高速な1回のパスで100万ポイントを処理できます。
論文 参考訳(メタデータ) (2021-07-06T05:08:34Z) - MG-SAGC: A multiscale graph and its self-adaptive graph convolution
network for 3D point clouds [6.504546503077047]
点群の多スケールグラフ生成法を提案する。
このアプローチは、ポイントクラウドを、スケール空間におけるポイントクラウドのマルチスケール分析をサポートする構造化マルチスケールグラフ形式に変換する。
従来の畳み込みニューラルネットワークは不規則な近傍を持つグラフデータには適用できないため,チェビシェフグラフを用いて不規則な畳み込みフィルタに適合するセフ適応畳み込みカーネルを提案する。
論文 参考訳(メタデータ) (2020-12-23T01:58:41Z) - Local Grid Rendering Networks for 3D Object Detection in Point Clouds [98.02655863113154]
CNNは強力だが、全点の雲を高密度の3Dグリッドに酸化した後、点データに直接畳み込みを適用するのは計算コストがかかる。
入力点のサブセットの小さな近傍を低解像度の3Dグリッドに独立してレンダリングする,新しい,原理化されたローカルグリッドレンダリング(LGR)演算を提案する。
ScanNetとSUN RGB-Dデータセットを用いた3次元オブジェクト検出のためのLGR-Netを検証する。
論文 参考訳(メタデータ) (2020-07-04T13:57:43Z) - TearingNet: Point Cloud Autoencoder to Learn Topology-Friendly
Representations [20.318695890515613]
本稿では,固定長ディスクリプタを用いたポイントクラウドの表現に挑戦する自動エンコーダTearingNetを提案する。
我々のTeringNetは、提案されたTeringネットワークモジュールと、相互に反復的に相互作用するFoldingネットワークモジュールによって特徴付けられる。
実験は、点雲の再構成や、ベンチマークよりもトポロジに優しい表現を生成するという点で、我々の提案の優位性を示している。
論文 参考訳(メタデータ) (2020-06-17T22:42:43Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。