論文の概要: A Flag Decomposition for Hierarchical Datasets
- arxiv url: http://arxiv.org/abs/2502.07782v1
- Date: Tue, 11 Feb 2025 18:59:52 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-02-12 14:07:28.016096
- Title: A Flag Decomposition for Hierarchical Datasets
- Title(参考訳): 階層的データセットのためのフラグ分解
- Authors: Nathan Mankovich, Ignacio Santamaria, Gustau Camps-Valls, Tolga Birdal,
- Abstract要約: フラッグ多様体は部分空間の階層的なネスト列を符号化する。
現在の応用は、しばしば共通の行列分解法を用いてフラグを抽出することに制限される。
任意の階層的な実保存データをStiefel座標の階層値のフラグ表現に分解する新しいフラグベース手法を提案する。
- 参考スコア(独自算出の注目度): 17.424354744499695
- License:
- Abstract: Flag manifolds encode hierarchical nested sequences of subspaces and serve as powerful structures for various computer vision and machine learning applications. Despite their utility in tasks such as dimensionality reduction, motion averaging, and subspace clustering, current applications are often restricted to extracting flags using common matrix decomposition methods like the singular value decomposition. Here, we address the need for a general algorithm to factorize and work with hierarchical datasets. In particular, we propose a novel, flag-based method that decomposes arbitrary hierarchical real-valued data into a hierarchy-preserving flag representation in Stiefel coordinates. Our work harnesses the potential of flag manifolds in applications including denoising, clustering, and few-shot learning.
- Abstract(参考訳): フラッグ多様体は、部分空間の階層的なネスト配列を符号化し、様々なコンピュータビジョンや機械学習アプリケーションのための強力な構造として機能する。
次元減少、運動平均化、サブスペースクラスタリングといったタスクでは有効であるが、現在のアプリケーションは特異値分解のような一般的な行列分解法を用いてフラグを抽出することに制限されることが多い。
ここでは、階層的なデータセットを分解し、処理するための一般的なアルゴリズムの必要性に対処する。
特に、任意の階層的実数値データをStiefel座標の階層保存フラグ表現に分解する新しいフラグベースの手法を提案する。
我々の研究は、デノナイズ、クラスタリング、および数発の学習を含むアプリケーションにおけるフラグ多様体の可能性を活用する。
関連論文リスト
- Deep Manifold Graph Auto-Encoder for Attributed Graph Embedding [51.75091298017941]
本稿では,属性付きグラフデータに対する新しいDeep Manifold (Variational) Graph Auto-Encoder (DMVGAE/DMGAE)を提案する。
提案手法は,最先端のベースラインアルゴリズムを,一般的なデータセット間でのダウンストリームタスクの差を大きく越える。
論文 参考訳(メタデータ) (2024-01-12T17:57:07Z) - Chordal Averaging on Flag Manifolds and Its Applications [22.357999963733302]
本稿では, 弦韻法の下でのフラグ多様体上の点集合のフラグ平均とフラグ中間値を計算するための, 証明可能な新しいアルゴリズムを提案する。
論文 参考訳(メタデータ) (2023-03-23T17:57:28Z) - Contrastive Multi-view Hyperbolic Hierarchical Clustering [33.050054725595736]
対比多視点ハイパーボリック階層クラスタリング(CMHHC)を提案する。
マルチビューアライメント学習、アライメントされた特徴類似学習、連続的な双曲的階層的クラスタリングという3つのコンポーネントで構成されている。
5つの実世界のデータセットに対する実験結果から,提案手法の有効性が示された。
論文 参考訳(メタデータ) (2022-05-05T12:56:55Z) - Use All The Labels: A Hierarchical Multi-Label Contrastive Learning
Framework [75.79736930414715]
本稿では,すべての利用可能なラベルを活用でき,クラス間の階層的関係を維持できる階層型多言語表現学習フレームワークを提案する。
比較損失に階層的ペナルティを併用し,その階層的制約を強制する。
論文 参考訳(メタデータ) (2022-04-27T21:41:44Z) - Exploring the Hierarchy in Relation Labels for Scene Graph Generation [75.88758055269948]
提案手法は,Recall@50において,複数の最先端ベースラインを大きなマージン(最大33%の相対利得)で改善することができる。
実験により,提案手法により,最先端のベースラインを大きなマージンで改善できることが示された。
論文 参考訳(メタデータ) (2020-09-12T17:36:53Z) - Campus3D: A Photogrammetry Point Cloud Benchmark for Hierarchical
Understanding of Outdoor Scene [76.4183572058063]
複数の屋外シーン理解タスクに対して,リッチな注釈付き3Dポイントクラウドデータセットを提案する。
データセットは階層型ラベルとインスタンスベースのラベルの両方でポイントワイズアノテートされている。
本稿では,3次元点雲分割のための階層的学習問題を定式化し,様々な階層間の整合性を評価することを提案する。
論文 参考訳(メタデータ) (2020-08-11T19:10:32Z) - A Multiscale Graph Convolutional Network Using Hierarchical Clustering [0.0]
マルチスケールの分解によってこの情報を活用する新しいアーキテクチャを探索する。
デンドログラムは、Girvan-Newman階層的クラスタリングアルゴリズムによって生成される。
アーキテクチャはベンチマーク引用ネットワーク上でテストされ、競合性能を実証する。
論文 参考訳(メタデータ) (2020-06-22T18:13:03Z) - Graph Neural Networks with Composite Kernels [60.81504431653264]
カーネル重み付けの観点からノード集約を再解釈する。
本稿では,アグリゲーション方式における特徴類似性を考慮したフレームワークを提案する。
特徴空間における特徴類似性をエンコードするために,元の隣り合うカーネルと学習可能なカーネルの合成として特徴集約を提案する。
論文 参考訳(メタデータ) (2020-05-16T04:44:29Z) - Spatial Pyramid Based Graph Reasoning for Semantic Segmentation [67.47159595239798]
セマンティックセグメンテーションタスクにグラフ畳み込みを適用し、改良されたラプラシアンを提案する。
グラフ推論は、空間ピラミッドとして構成された元の特徴空間で直接実行される。
計算とメモリのオーバーヘッドの利点で同等のパフォーマンスを実現しています。
論文 参考訳(メタデータ) (2020-03-23T12:28:07Z) - Data Structures & Algorithms for Exact Inference in Hierarchical
Clustering [41.24805506595378]
本稿では,新しいトレリスデータ構造に基づく階層クラスタリングにおける表現型推論のための動的プログラミングアルゴリズムを提案する。
我々のアルゴリズムは時間と空間に比例してN$要素のパワーセットをスケールし、これは(2N-3)! 可能な階層のそれぞれを明示的に考慮するよりも指数関数的に効率的である。
論文 参考訳(メタデータ) (2020-02-26T17:43:53Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。