論文の概要: Federated Self-supervised Domain Generalization for Label-efficient Polyp Segmentation
- arxiv url: http://arxiv.org/abs/2502.07951v1
- Date: Tue, 11 Feb 2025 21:00:01 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-02-13 13:49:09.098603
- Title: Federated Self-supervised Domain Generalization for Label-efficient Polyp Segmentation
- Title(参考訳): ラベル効率のよいポリプセグメンテーションのためのフェデレーション自己教師付きドメイン一般化
- Authors: Xinyi Tan, Jiacheng Wang, Liansheng Wang,
- Abstract要約: フェデレーテッド・ラーニング(FL)は、このプライバシー問題に対する強硬な解決策である。
FLの一般化能力を高めるために,フェデレーション型自己監督型ドメイン一般化法(LFDG)を提案する。
本手法はベースライン法および最近のFL法およびSSL法よりも3.80%,3.92%向上した。
- 参考スコア(独自算出の注目度): 12.12743798858467
- License:
- Abstract: Employing self-supervised learning (SSL) methodologies assumes par-amount significance in handling unlabeled polyp datasets when building deep learning-based automatic polyp segmentation models. However, the intricate privacy dynamics surrounding medical data often preclude seamless data sharing among disparate medical centers. Federated learning (FL) emerges as a formidable solution to this privacy conundrum, yet within the realm of FL, optimizing model generalization stands as a pressing imperative. Robust generalization capabilities are imperative to ensure the model's efficacy across diverse geographical domains post-training on localized client datasets. In this paper, a Federated self-supervised Domain Generalization method is proposed to enhance the generalization capacity of federated and Label-efficient intestinal polyp segmentation, named LFDG. Based on a classical SSL method, DropPos, LFDG proposes an adversarial learning-based data augmentation method (SSADA) to enhance the data diversity. LFDG further proposes a relaxation module based on Source-reconstruction and Augmentation-masking (SRAM) to maintain stability in feature learning. We have validated LFDG on polyp images from six medical centers. The performance of our method achieves 3.80% and 3.92% better than the baseline and other recent FL methods and SSL methods, respectively.
- Abstract(参考訳): 自己教師付き学習(SSL)手法を利用することは、ディープラーニングベースの自動ポリープセグメンテーションモデルを構築する際に、ラベルのないポリープデータセットを扱う上で、極めて重要であると仮定する。
しかし、医療データを取り巻く複雑なプライバシーのダイナミクスは、異なる医療センター間でシームレスなデータ共有を妨げることが多い。
フェデレーテッド・ラーニング(FL)は、このプライバシの難解な解決法として現れるが、FLの領域内では、モデル一般化の最適化は押し付け命令である。
ロバストな一般化機能は、ローカライズされたクライアントデータセットでトレーニング後のさまざまな地理的領域におけるモデルの有効性を保証するために不可欠である。
本稿では,フェデレートとラベル効率のよい腸管ポリープセグメンテーション(LFDG)の一般化能力を高めるために,フェデレーション自己監督型ドメイン一般化手法を提案する。
古典的なSSL手法であるDropPosに基づいて、LFDGはデータ多様性を高めるために、逆学習に基づくデータ拡張法(SSADA)を提案する。
LFDGはさらに、特徴学習における安定性を維持するために、ソース再構成と拡張マスキング(SRAM)に基づく緩和モジュールを提案する。
6施設のポリープ画像に対してLFDGの有効性を確認した。
提案手法の性能は,ベースライン法および最近のFL法およびSSL法よりも3.80%,3.92%向上した。
関連論文リスト
- FedSemiDG: Domain Generalized Federated Semi-supervised Medical Image Segmentation [19.87797382888023]
医用画像の多様性とラベル付きデータの欠如により、医用画像のセグメンテーションは困難である。
本稿では,FedSemiDGの課題に対処するため,FGASL(Federated Generalization-Aware Semi Supervised Learning)という新しいフレームワークを提案する。
提案手法は最先端のFSSLおよびドメインの一般化手法を著しく上回り,未確認領域に対する堅牢な一般化を実現している。
論文 参考訳(メタデータ) (2025-01-13T14:54:49Z) - FedMetaMed: Federated Meta-Learning for Personalized Medication in Distributed Healthcare Systems [7.32609591220333]
パーソナライズドメディケーションのためのフェデレーションメタラーニング(FedMetaMed)について紹介する。
FedMetaMedは、フェデレーションラーニングとメタラーニングを組み合わせて、医療システム全体にわたる多様な患者データに適応するモデルを作成する。
我々は、FedMetaMedが最先端のFL法より優れ、最先端のコホートでも優れた一般化を示すことを示す。
論文 参考訳(メタデータ) (2024-12-05T03:36:55Z) - FedMRL: Data Heterogeneity Aware Federated Multi-agent Deep Reinforcement Learning for Medical Imaging [12.307490659840845]
我々は,データの不均一性に対処する新しいマルチエージェント深層強化学習フレームワークであるFedMRLを紹介する。
FedMRLは、クライアント間の公平性を促進するために、新たな損失関数を導入し、最終グローバルモデルのバイアスを防ぐ。
その結果,FedMRLが最先端技術よりも優れていることが示された。
論文 参考訳(メタデータ) (2024-07-08T10:10:07Z) - SSL-DG: Rethinking and Fusing Semi-supervised Learning and Domain
Generalization in Medical Image Segmentation [0.0]
そこで本研究では,未知のターゲットデータをソースデータの線形結合で表現し,単純なデータ拡張によって実現可能であることを示す。
DGとSSLを融合したSSL-DGを提案する。
論文 参考訳(メタデータ) (2023-11-05T07:44:40Z) - Consistency Regularization for Generalizable Source-free Domain
Adaptation [62.654883736925456]
ソースフリードメイン適応(source-free domain adapt, SFDA)は、ソースデータセットにアクセスすることなく、十分にトレーニングされたソースモデルを未学習のターゲットドメインに適応することを目的としている。
既存のSFDAメソッドは、ターゲットのトレーニングセット上で適用されたモデルを評価し、目に見えないが同一の分散テストセットからデータを無視する。
より一般化可能なSFDA法を開発するための整合正則化フレームワークを提案する。
論文 参考訳(メタデータ) (2023-08-03T07:45:53Z) - Learnable Weight Initialization for Volumetric Medical Image Segmentation [66.3030435676252]
本稿では,学習可能な重みに基づくハイブリッド医療画像セグメンテーション手法を提案する。
我々のアプローチはどんなハイブリッドモデルにも簡単に統合でき、外部のトレーニングデータを必要としない。
多臓器・肺がんセグメンテーションタスクの実験は、我々のアプローチの有効性を実証している。
論文 参考訳(メタデータ) (2023-06-15T17:55:05Z) - Federated and Generalized Person Re-identification through Domain and
Feature Hallucinating [88.77196261300699]
人物再識別(re-ID)におけるフェデレーションドメイン一般化(FedDG)の問題について検討する。
一般化された局所的・グローバルなモデルを学ぶための多様な特徴を創出する手法として,DFH (Domain and Feature Hallucinating) を提案する。
提案手法は4つの大規模re-IDベンチマークにおいてFedDGの最先端性能を実現する。
論文 参考訳(メタデータ) (2022-03-05T09:15:13Z) - Local Learning Matters: Rethinking Data Heterogeneity in Federated
Learning [61.488646649045215]
フェデレートラーニング(FL)は、クライアントのネットワーク(エッジデバイス)でプライバシ保護、分散ラーニングを行うための有望な戦略である。
論文 参考訳(メタデータ) (2021-11-28T19:03:39Z) - Differentially private federated deep learning for multi-site medical
image segmentation [56.30543374146002]
フェデレートラーニング(FL)のような協調機械学習技術は、データ転送なしで効果的に大規模なデータセット上でモデルのトレーニングを可能にする。
近年のイニシアチブでは、FLで訓練されたセグメンテーションモデルが、局所的に訓練されたモデルと同様のパフォーマンスを達成できることが示されている。
しかし、FLは完全なプライバシ保護技術ではなく、プライバシ中心の攻撃は秘密の患者データを開示することができる。
論文 参考訳(メタデータ) (2021-07-06T12:57:32Z) - FedDG: Federated Domain Generalization on Medical Image Segmentation via
Episodic Learning in Continuous Frequency Space [63.43592895652803]
フェデレーションラーニングは、分散医療機関がプライバシ保護を備えた共有予測モデルを共同で学習することを可能にします。
臨床展開では、連合学習で訓練されたモデルは、連邦外の完全に見えない病院に適用された場合、パフォーマンス低下に苦しむ可能性がある。
そこで本研究では,この問題に対してELCFS(Episodic Learning in Continuous frequency Space)と呼ばれる新しいアプローチを提案する。
本手法の有効性は,2つの医用画像分割作業における最先端および深部アブレーション実験よりも優れていた。
論文 参考訳(メタデータ) (2021-03-10T13:05:23Z) - Multi-site fMRI Analysis Using Privacy-preserving Federated Learning and
Domain Adaptation: ABIDE Results [13.615292855384729]
高品質なディープラーニングモデルを訓練するには,大量の患者情報を集める必要がある。
患者データのプライバシを保護する必要があるため、複数の機関から中央データベースを組み立てることは困難である。
フェデレート・ラーニング(Federated Learning)は、エンティティのデータを集中化せずに、人口レベルのモデルをトレーニングすることを可能にする。
論文 参考訳(メタデータ) (2020-01-16T04:49:33Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。