論文の概要: ACCESS : A Benchmark for Abstract Causal Event Discovery and Reasoning
- arxiv url: http://arxiv.org/abs/2502.08148v1
- Date: Wed, 12 Feb 2025 06:19:02 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-02-13 13:48:31.075170
- Title: ACCESS : A Benchmark for Abstract Causal Event Discovery and Reasoning
- Title(参考訳): ACCESS : 抽象因果イベント発見と推論のためのベンチマーク
- Authors: Vy Vo, Lizhen Qu, Tao Feng, Yuncheng Hua, Xiaoxi Kang, Songhai Fan, Tim Dwyer, Lay-Ki Soon, Gholamreza Haffari,
- Abstract要約: 我々は、抽象因果イベントの発見と推論のために設計されたベンチマークである textttACCESS を紹介する。
本稿では,暗黙的なコモンセンス因果的知識の大規模データセットから,イベント一般化のための抽象化を識別するためのパイプラインを提案する。
- 参考スコア(独自算出の注目度): 47.540945048737434
- License:
- Abstract: Identifying cause-and-effect relationships is critical to understanding real-world dynamics and ultimately causal reasoning. Existing methods for identifying event causality in NLP, including those based on Large Language Models (LLMs), exhibit difficulties in out-of-distribution settings due to the limited scale and heavy reliance on lexical cues within available benchmarks. Modern benchmarks, inspired by probabilistic causal inference, have attempted to construct causal graphs of events as a robust representation of causal knowledge, where \texttt{CRAB} \citep{romanou2023crab} is one such recent benchmark along this line. In this paper, we introduce \texttt{ACCESS}, a benchmark designed for discovery and reasoning over abstract causal events. Unlike existing resources, \texttt{ACCESS} focuses on causality of everyday life events on the abstraction level. We propose a pipeline for identifying abstractions for event generalizations from \texttt{GLUCOSE} \citep{mostafazadeh-etal-2020-glucose}, a large-scale dataset of implicit commonsense causal knowledge, from which we subsequently extract $1,4$K causal pairs. Our experiments highlight the ongoing challenges of using statistical methods and/or LLMs for automatic abstraction identification and causal discovery in NLP. Nonetheless, we demonstrate that the abstract causal knowledge provided in \texttt{ACCESS} can be leveraged for enhancing QA reasoning performance in LLMs.
- Abstract(参考訳): 因果関係の同定は、現実世界のダイナミクスや究極的には因果推論を理解するために重要である。
LLM(Large Language Models)などを含む,NLPにおける事象因果関係を識別する既存の手法は,限られたスケールと,利用可能なベンチマーク内での語彙的手がかりに大きく依存することによる,配布外設定の難しさを示す。
確率論的因果推論にインスパイアされた現代のベンチマークは、因果的知識の堅牢な表現としてイベントの因果グラフを構築しようと試みており、そこでは \textt{CRAB} \citep{romanou2023crab} がこの線に沿ってそのような最近のベンチマークである。
本稿では,抽象因果事象の発見と推論を目的としたベンチマークである「texttt{ACCESS}」を紹介する。
既存のリソースとは異なり、‘texttt{ACCESS} は抽象レベルでの日常生活イベントの因果関係に焦点を当てている。
本稿では,暗黙的コモンセンス因果的知識の大規模データセットである <texttt{GLUCOSE} \citep{mostafazadeh-etal-2020-glucose} からイベント一般化の抽象化を抽出するためのパイプラインを提案する。
本実験は,NLPにおける自動抽象識別と因果発見のために,統計的手法やLLMを用いることの課題について述べる。
いずれにせよ, LLMにおけるQA推論性能の向上には, <texttt{ACCESS} で提供される抽象因果知識が有効であることを示す。
関連論文リスト
- Discovery of Maximally Consistent Causal Orders with Large Language Models [0.8192907805418583]
因果発見は複雑なシステムを理解するのに不可欠である。
伝統的な手法は、しばしば強く、証明不可能な仮定に依存する。
本稿では,非循環型トーナメントのクラスを導出する新しい手法を提案する。
論文 参考訳(メタデータ) (2024-12-18T16:37:51Z) - Counterfactual Causal Inference in Natural Language with Large Language Models [9.153187514369849]
本稿では,自然言語からの因果構造発見と因果推論手法を提案する。
まず LLM を用いてテキストデータからインスタンス化された因果変数を抽出し,因果グラフを構築する。
次に、推定されたグラフに対して反実数推論を行う。
論文 参考訳(メタデータ) (2024-10-08T21:53:07Z) - Large Language Models for Constrained-Based Causal Discovery [4.858756226945995]
因果関係は経済、脳、気候といった複雑なシステムを理解するのに不可欠である。
この研究は、因果グラフ生成のためのドメインエキスパートの代替として、LLM(Large Language Models)の能力を探求する。
論文 参考訳(メタデータ) (2024-06-11T15:45:24Z) - On the Identification of Temporally Causal Representation with Instantaneous Dependence [50.14432597910128]
時間的因果表現学習は時系列観測から潜在因果過程を特定することを目的としている。
ほとんどの方法は、潜在因果過程が即時関係を持たないという仮定を必要とする。
我々は,インスタントtextbfOus textbfLatent dynamics のための textbfIDentification フレームワークを提案する。
論文 参考訳(メタデータ) (2024-05-24T08:08:05Z) - Cause and Effect: Can Large Language Models Truly Understand Causality? [1.2334534968968969]
本研究では,CARE CA(Content Aware Reasoning Enhancement with Counterfactual Analysis)フレームワークという新しいアーキテクチャを提案する。
提案するフレームワークには,ConceptNetと反ファクト文を備えた明示的な因果検出モジュールと,大規模言語モデルによる暗黙的な因果検出が組み込まれている。
ConceptNetの知識は、因果的発見、因果的識別、反事実的推論といった複数の因果的推論タスクのパフォーマンスを向上させる。
論文 参考訳(メタデータ) (2024-02-28T08:02:14Z) - Zero-shot Causal Graph Extrapolation from Text via LLMs [50.596179963913045]
我々は,自然言語から因果関係を推定する大規模言語モデル (LLM) の能力を評価する。
LLMは、(特別な)トレーニングサンプルを必要とせずにペア関係のベンチマークで競合性能を示す。
我々は、反復的なペアワイズクエリを通して因果グラフを外挿するアプローチを拡張した。
論文 参考訳(メタデータ) (2023-12-22T13:14:38Z) - CLadder: Assessing Causal Reasoning in Language Models [82.8719238178569]
我々は,大言語モデル (LLM) が因果関係をコヒーレントに説明できるかどうかを検討する。
ユデア・パールらによって仮定された「因果推論エンジン」にインスパイアされた、自然言語における因果推論という新たなNLPタスクを提案する。
論文 参考訳(メタデータ) (2023-12-07T15:12:12Z) - Inducing Causal Structure for Abstractive Text Summarization [76.1000380429553]
要約データの因果構造を誘導する構造因果モデル(SCM)を導入する。
本稿では因果的要因を模倣できる因果的表現を学習するための因果性インスピレーション付き系列列列モデル(CI-Seq2Seq)を提案する。
2つの広く使われているテキスト要約データセットの実験結果は、我々のアプローチの利点を示している。
論文 参考訳(メタデータ) (2023-08-24T16:06:36Z) - Active Bayesian Causal Inference [72.70593653185078]
因果発見と推論を統合するための完全ベイズ能動学習フレームワークであるアクティブベイズ因果推論(ABCI)を提案する。
ABCIは因果関係のモデルと関心のクエリを共同で推論する。
我々のアプローチは、完全な因果グラフの学習のみに焦点を当てた、いくつかのベースラインよりも、よりデータ効率が高いことを示す。
論文 参考訳(メタデータ) (2022-06-04T22:38:57Z) - Improving Event Causality Identification via Self-Supervised
Representation Learning on External Causal Statement [17.77752074834281]
イベント因果同定に外部因果文を活用するCauSeRLを提案する。
まず、外部因果文から文脈固有の因果パターンを学習するための自己教師型フレームワークを設計する。
我々は、学習した文脈固有の因果パターンを対象のECIモデルに組み込むために、コントラッシブトランスファー戦略を採用する。
論文 参考訳(メタデータ) (2021-06-03T07:50:50Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。