Learning-Based Design of LQG Controllers in Quantum Coherent Feedback
- URL: http://arxiv.org/abs/2502.08170v1
- Date: Wed, 12 Feb 2025 07:24:22 GMT
- Title: Learning-Based Design of LQG Controllers in Quantum Coherent Feedback
- Authors: Chunxiang Song, Yanan Liu, Guofeng Zhang, Huadong Mo, Daoyi Dong,
- Abstract summary: We propose a differential evolution algorithm specifically tailored for the design of Linear-Quadratic-Gaussian (LQG) controllers in quantum systems.
The algorithm incorporates specialized modules, including relaxed feasibility rules, a scheduled penalty function, adaptive search range adjustment, and the bet-and-run'' strategy.
The proposed approach holds significant potential for application to other linear quantum systems in performance optimization tasks subject to physically feasible constraints.
- Score: 11.494992140467984
- License:
- Abstract: In this paper, we propose a differential evolution (DE) algorithm specifically tailored for the design of Linear-Quadratic-Gaussian (LQG) controllers in quantum systems. Building upon the foundational DE framework, the algorithm incorporates specialized modules, including relaxed feasibility rules, a scheduled penalty function, adaptive search range adjustment, and the ``bet-and-run'' initialization strategy. These enhancements improve the algorithm's exploration and exploitation capabilities while addressing the unique physical realizability requirements of quantum systems. The proposed method is applied to a quantum optical system, where three distinct controllers with varying configurations relative to the plant are designed. The resulting controllers demonstrate superior performance, achieving lower LQG performance indices compared to existing approaches. Additionally, the algorithm ensures that the designs comply with physical realizability constraints, guaranteeing compatibility with practical quantum platforms. The proposed approach holds significant potential for application to other linear quantum systems in performance optimization tasks subject to physically feasible constraints.
Related papers
- Exploring Quantum Control Landscape and Solution Space Complexity through Dimensionality Reduction & Optimization Algorithms [0.0]
We analyze the quantum control landscape (QCL) for a single two-level quantum system (qubit) using various control strategies.
Results indicate that dimensionality reduction techniques such as PCA, can play an important role in understanding the complex nature of quantum control in higher dimensions.
arXiv Detail & Related papers (2025-02-17T15:26:15Z) - Pulse-based variational quantum optimization and metalearning in superconducting circuits [3.770494165043573]
We introduce pulse-based variational quantum optimization (PBVQO) as a hardware-level framework.
We illustrate the framework by optimizing external superconducting on quantum interference devices.
The synergy between PBVQO and meta-learning provides an advantage over conventional gate-based variational algorithms.
arXiv Detail & Related papers (2024-07-17T15:05:36Z) - Bayesian Parameterized Quantum Circuit Optimization (BPQCO): A task and hardware-dependent approach [49.89480853499917]
Variational quantum algorithms (VQA) have emerged as a promising quantum alternative for solving optimization and machine learning problems.
In this paper, we experimentally demonstrate the influence of the circuit design on the performance obtained for two classification problems.
We also study the degradation of the obtained circuits in the presence of noise when simulating real quantum computers.
arXiv Detail & Related papers (2024-04-17T11:00:12Z) - Quantum control by the environment: Turing uncomputability, Optimization over Stiefel manifolds, Reachable sets, and Incoherent GRAPE [56.47577824219207]
In many practical situations, the controlled quantum systems are open, interacting with the environment.
In this note, we briefly review some results on control of open quantum systems using environment as a resource.
arXiv Detail & Related papers (2024-03-20T10:09:13Z) - Measurement-Based Quantum Approximate Optimization [0.24861619769660645]
We focus on measurement-based quantum computing protocols for approximate optimization.
We derive measurement patterns for applying QAOA to the broad and important class of QUBO problems.
We discuss the resource requirements and tradeoffs of our approach to that of more traditional quantum circuits.
arXiv Detail & Related papers (2024-03-18T06:59:23Z) - Optimization Applications as Quantum Performance Benchmarks [0.0]
Combinatorial optimization is anticipated to be one of the primary use cases for quantum computation in the coming years.
Inspired by existing methods to characterize classical optimization algorithms, we analyze the solution quality obtained by solving Max-Cut problems.
This is used to guide the development of an advanced benchmarking framework for quantum computers.
arXiv Detail & Related papers (2023-02-05T01:56:06Z) - Decomposition of Matrix Product States into Shallow Quantum Circuits [62.5210028594015]
tensor network (TN) algorithms can be mapped to parametrized quantum circuits (PQCs)
We propose a new protocol for approximating TN states using realistic quantum circuits.
Our results reveal one particular protocol, involving sequential growth and optimization of the quantum circuit, to outperform all other methods.
arXiv Detail & Related papers (2022-09-01T17:08:41Z) - FLIP: A flexible initializer for arbitrarily-sized parametrized quantum
circuits [105.54048699217668]
We propose a FLexible Initializer for arbitrarily-sized Parametrized quantum circuits.
FLIP can be applied to any family of PQCs, and instead of relying on a generic set of initial parameters, it is tailored to learn the structure of successful parameters.
We illustrate the advantage of using FLIP in three scenarios: a family of problems with proven barren plateaus, PQC training to solve max-cut problem instances, and PQC training for finding the ground state energies of 1D Fermi-Hubbard models.
arXiv Detail & Related papers (2021-03-15T17:38:33Z) - Quantum circuit architecture search for variational quantum algorithms [88.71725630554758]
We propose a resource and runtime efficient scheme termed quantum architecture search (QAS)
QAS automatically seeks a near-optimal ansatz to balance benefits and side-effects brought by adding more noisy quantum gates.
We implement QAS on both the numerical simulator and real quantum hardware, via the IBM cloud, to accomplish data classification and quantum chemistry tasks.
arXiv Detail & Related papers (2020-10-20T12:06:27Z) - Adaptive pruning-based optimization of parameterized quantum circuits [62.997667081978825]
Variisy hybrid quantum-classical algorithms are powerful tools to maximize the use of Noisy Intermediate Scale Quantum devices.
We propose a strategy for such ansatze used in variational quantum algorithms, which we call "Efficient Circuit Training" (PECT)
Instead of optimizing all of the ansatz parameters at once, PECT launches a sequence of variational algorithms.
arXiv Detail & Related papers (2020-10-01T18:14:11Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.