Mitigating Hallucinations in Multimodal Spatial Relations through Constraint-Aware Prompting
- URL: http://arxiv.org/abs/2502.08317v1
- Date: Wed, 12 Feb 2025 11:32:19 GMT
- Title: Mitigating Hallucinations in Multimodal Spatial Relations through Constraint-Aware Prompting
- Authors: Jiarui Wu, Zhuo Liu, Hangfeng He,
- Abstract summary: Spatial relation hallucinations pose a persistent challenge in large vision-language models (LVLMs)
We propose a constraint-aware prompting framework designed to reduce spatial relation hallucinations.
- Score: 7.962140902232628
- License:
- Abstract: Spatial relation hallucinations pose a persistent challenge in large vision-language models (LVLMs), leading to generate incorrect predictions about object positions and spatial configurations within an image. To address this issue, we propose a constraint-aware prompting framework designed to reduce spatial relation hallucinations. Specifically, we introduce two types of constraints: (1) bidirectional constraint, which ensures consistency in pairwise object relations, and (2) transitivity constraint, which enforces relational dependence across multiple objects. By incorporating these constraints, LVLMs can produce more spatially coherent and consistent outputs. We evaluate our method on three widely-used spatial relation datasets, demonstrating performance improvements over existing approaches. Additionally, a systematic analysis of various bidirectional relation analysis choices and transitivity reference selections highlights greater possibilities of our methods in incorporating constraints to mitigate spatial relation hallucinations.
Related papers
- SpatialCoT: Advancing Spatial Reasoning through Coordinate Alignment and Chain-of-Thought for Embodied Task Planning [42.487500113839666]
We propose a novel approach to bolster the spatial reasoning capabilities of Vision-Language Models (VLMs)
Our approach comprises two stages: spatial coordinate bi-directional alignment, and chain-of-thought spatial grounding.
We evaluate our method on challenging navigation and manipulation tasks, both in simulation and real-world settings.
arXiv Detail & Related papers (2025-01-17T09:46:27Z) - Fast Disentangled Slim Tensor Learning for Multi-view Clustering [28.950845031752927]
We propose a new approach termed fast Disdentangle Slim Learning (DSTL) for multi-view clustering.
To alleviate the negative influence of feature redundancy, inspired by robust PCA, DSTL disentangles the latent low-dimensional representation into a semantic-unrelated part and a semantic-related part for each view.
Our proposed model is computationally efficient and can be solved effectively.
arXiv Detail & Related papers (2024-11-12T09:57:53Z) - Bridging the Modality Gap: Dimension Information Alignment and Sparse Spatial Constraint for Image-Text Matching [10.709744162565274]
We propose a novel method called DIAS to bridge the modality gap from two aspects.
The method achieves 4.3%-10.2% rSum improvements on Flickr30k and MSCOCO benchmarks.
arXiv Detail & Related papers (2024-10-22T09:37:29Z) - RNG: Reducing Multi-level Noise and Multi-grained Semantic Gap for Joint Multimodal Aspect-Sentiment Analysis [27.545702415272125]
We propose a novel framework named RNG for Joint Multimodal Aspect-Sentiment Analysis (JMASA)
Specifically, to reduce multi-level modality noise and multi-grained semantic gap, we design three constraints.
Experiments on two datasets validate our new state-of-the-art performance.
arXiv Detail & Related papers (2024-05-20T12:18:46Z) - DisCo: Towards Harmonious Disentanglement and Collaboration between Tabular and Semantic Space for Recommendation [38.650502048553626]
We propose DisCo to Disentangle the unique patterns from the two representation spaces and Collaborate the two spaces for recommendation enhancement.
These modules strike a balance between disentanglement and collaboration of the two representation spaces to produce informative pattern vectors.
arXiv Detail & Related papers (2024-05-20T08:07:27Z) - Double Duality: Variational Primal-Dual Policy Optimization for
Constrained Reinforcement Learning [132.7040981721302]
We study the Constrained Convex Decision Process (MDP), where the goal is to minimize a convex functional of the visitation measure.
Design algorithms for a constrained convex MDP faces several challenges, including handling the large state space.
arXiv Detail & Related papers (2024-02-16T16:35:18Z) - Multi-Grained Multimodal Interaction Network for Entity Linking [65.30260033700338]
Multimodal entity linking task aims at resolving ambiguous mentions to a multimodal knowledge graph.
We propose a novel Multi-GraIned Multimodal InteraCtion Network $textbf(MIMIC)$ framework for solving the MEL task.
arXiv Detail & Related papers (2023-07-19T02:11:19Z) - Maximum Spatial Perturbation Consistency for Unpaired Image-to-Image
Translation [56.44946660061753]
This paper proposes a universal regularization technique called maximum spatial perturbation consistency (MSPC)
MSPC enforces a spatial perturbation function (T ) and the translation operator (G) to be commutative (i.e., TG = GT )
Our method outperforms the state-of-the-art methods on most I2I benchmarks.
arXiv Detail & Related papers (2022-03-23T19:59:04Z) - Towards Robust and Adaptive Motion Forecasting: A Causal Representation
Perspective [72.55093886515824]
We introduce a causal formalism of motion forecasting, which casts the problem as a dynamic process with three groups of latent variables.
We devise a modular architecture that factorizes the representations of invariant mechanisms and style confounders to approximate a causal graph.
Experiment results on synthetic and real datasets show that our three proposed components significantly improve the robustness and reusability of the learned motion representations.
arXiv Detail & Related papers (2021-11-29T18:59:09Z) - Joint Constrained Learning for Event-Event Relation Extraction [94.3499255880101]
We propose a joint constrained learning framework for modeling event-event relations.
Specifically, the framework enforces logical constraints within and across multiple temporal and subevent relations.
We show that our joint constrained learning approach effectively compensates for the lack of jointly labeled data.
arXiv Detail & Related papers (2020-10-13T22:45:28Z) - RatE: Relation-Adaptive Translating Embedding for Knowledge Graph
Completion [51.64061146389754]
We propose a relation-adaptive translation function built upon a novel weighted product in complex space.
We then present our Relation-adaptive translating Embedding (RatE) approach to score each graph triple.
arXiv Detail & Related papers (2020-10-10T01:30:30Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.