論文の概要: Continuous Cardiac Arrest Prediction in ICU using PPG Foundation Model
- arxiv url: http://arxiv.org/abs/2502.08612v1
- Date: Wed, 12 Feb 2025 18:01:04 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-02-13 18:10:01.106547
- Title: Continuous Cardiac Arrest Prediction in ICU using PPG Foundation Model
- Title(参考訳): PPGファンデーションモデルを用いたICUにおける連続心停止予測
- Authors: Saurabh Kataria, Ran Xiao, Timothy Ruchti, Matthew Clark, Jiaying Lu, Randall J. Lee, Jocelyn Grunwell, Xiao Hu,
- Abstract要約: 急性の健康イベントの追跡と予測のための非侵襲的な患者モニタリングは、新たな研究分野である。
深達度表現のみを用いたICU患者のIHCA予測結果について報告する。
また,潜在空間における患者の健康軌道のアーキテクチャチューニングとPaCMAP可視化を通じて,モデル全体を包括的に分析する。
- 参考スコア(独自算出の注目度): 6.469423282286416
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Non-invasive patient monitoring for tracking and predicting adverse acute health events is an emerging area of research. We pursue in-hospital cardiac arrest (IHCA) prediction using only single-channel finger photoplethysmography (PPG) signals. Our proposed two-stage model Feature Extractor-Aggregator Network (FEAN) leverages powerful representations from pre-trained PPG foundation models (PPG-GPT of size up to 1 Billion) stacked with sequential classification models. We propose two FEAN variants ("1H", "FH") which use the latest one-hour and (max) 24-hour history to make decisions respectively. Our study is the first to present IHCA prediction results in ICU patients using only unimodal (continuous PPG signal) waveform deep representations. With our best model, we obtain an average of 0.79 AUROC over 24~h prediction window before CA event onset with our model peaking performance at 0.82 one hour before CA. We also provide a comprehensive analysis of our model through architectural tuning and PaCMAP visualization of patient health trajectory in latent space.
- Abstract(参考訳): 重症心身障害の追跡・予測のための非侵襲的患者モニタリングは,新たな研究分野である。
単チャンネル型指光胸腺造影(PPG)信号のみを用いて,院内心停止(IHCA)の予測を行った。
提案する2段階モデルであるFeature Extractor-Aggregator Network (FEAN) は,逐次分類モデルに積み重ねた事前学習PSG基盤モデル(PPG-GPT)の強力な表現を利用する。
最新の1時間履歴と(最大)24時間履歴を用いて決定を行う2つのFEAN変種("1H", "FH")を提案する。
ICU患者に対して、単調(連続PSG信号)波形の深部表現のみを用いたIHCA予測結果を初めて提示した。
最良モデルでは,CAイベント開始前の平均予測ウィンドウが平均0.79 AUROC,CA1時間前の0.82AUROC,CA1時間前の0.82AUROCが得られた。
また,潜在空間における患者健康トラジェクトリのアーキテクチャチューニングとPaCMAP可視化を通じて,我々のモデルを包括的に分析する。
関連論文リスト
- Finetuning and Quantization of EEG-Based Foundational BioSignal Models on ECG and PPG Data for Blood Pressure Estimation [53.2981100111204]
光胸腺撮影と心電図は、連続血圧モニタリング(BP)を可能にする可能性がある。
しかし、データ品質と患者固有の要因の変化のため、正確で堅牢な機械学習(ML)モデルは依然として困難である。
本研究では,1つのモータリティで事前学習したモデルを効果的に利用して,異なる信号タイプの精度を向上させる方法について検討する。
本手法は, 拡張期BPの最先端精度を約1.5倍に向上し, 拡張期BPの精度を1.5倍に向上させる。
論文 参考訳(メタデータ) (2025-02-10T13:33:12Z) - PaPaGei: Open Foundation Models for Optical Physiological Signals [8.78925327256804]
光胸腺撮影は生体信号と心臓血管の健康をモニタリングする主要な非侵襲的手法である。
PPG信号に基づいて訓練された機械学習モデルは、タスク固有であり、一般化に苦慮する傾向がある。
PPG信号のための最初のオープン基盤モデルPaPaGeiを提案する。
論文 参考訳(メタデータ) (2024-10-27T18:18:06Z) - Improving Diffusion Models for ECG Imputation with an Augmented Template
Prior [43.6099225257178]
ノイズと品質の悪い録音は、モバイルヘルスシステムを使って収集された信号にとって大きな問題である。
近年の研究では、確率的時系列モデルによるECGの欠落値の計算が検討されている。
本稿では,様々な健康状態の事前情報として,テンプレート誘導型拡散確率モデル(DDPM)PulseDiffを提案する。
論文 参考訳(メタデータ) (2023-10-24T11:34:15Z) - Foresight -- Deep Generative Modelling of Patient Timelines using
Electronic Health Records [46.024501445093755]
医学史の時間的モデリングは、将来の出来事を予測し、シミュレートしたり、リスクを見積り、代替診断を提案したり、合併症を予測するために使用することができる。
我々は、文書テキストを構造化されたコード化された概念に変換するためにNER+Lツール(MedCAT)を使用する新しいGPT3ベースのパイプラインであるForesightを提示する。
論文 参考訳(メタデータ) (2022-12-13T19:06:00Z) - An Interpretable Web-based Glioblastoma Multiforme Prognosis Prediction
Tool using Random Forest Model [1.1024591739346292]
治療後1年間のGBM患者の健康状態を推定する予測モデルを提案する。
総計467名のGBM患者の臨床像を13の特徴と2つの経過日で比較検討した。
GBM患者生存の予後因子のトップ3はMGMT遺伝子プロモーター,切除範囲,年齢であった。
論文 参考訳(メタデータ) (2021-08-30T07:56:34Z) - A multi-stage machine learning model on diagnosis of esophageal
manometry [50.591267188664666]
このフレームワークには、飲み込みレベルにおけるディープラーニングモデルと、学習レベルにおける機能ベースの機械学習モデルが含まれている。
これは、生のマルチスワローデータからHRM研究のCC診断を自動的に予測する最初の人工知能モデルである。
論文 参考訳(メタデータ) (2021-06-25T20:09:23Z) - A Knowledge Distillation Ensemble Framework for Predicting Short and
Long-term Hospitalisation Outcomes from Electronic Health Records Data [5.844828229178025]
既存の結果予測モデルは、頻繁なポジティブな結果の低いリコールに悩まされる。
我々は、死亡率とICUの受け入れによって表される逆さを自動的に予測する、高度にスケーリング可能な、堅牢な機械学習フレームワークを提案する。
論文 参考訳(メタデータ) (2020-11-18T15:56:28Z) - UNITE: Uncertainty-based Health Risk Prediction Leveraging Multi-sourced
Data [81.00385374948125]
我々はUNcertaInTyベースのhEalth Risk Prediction(UNITE)モデルを提案する。
UNITEは、複数ソースの健康データを活用した正確な疾患リスク予測と不確実性推定を提供する。
非アルコール性脂肪肝疾患(NASH)とアルツハイマー病(AD)の実態予測タスクにおけるUNITEの評価を行った。
UNITEはAD検出のF1スコアで最大0.841点、NASH検出のPR-AUCで最大0.609点を達成し、最高のベースラインで最大19%の高パフォーマンスを達成している。
論文 参考訳(メタデータ) (2020-10-22T02:28:11Z) - Individualized Prediction of COVID-19 Adverse outcomes with MLHO [9.197411456718708]
我々は、反復的な特徴とアルゴリズムの選択を利用して健康状態を予測するエンドツーエンドの機械学習フレームワークを開発した。
入院前患者の健康状態と人口統計を表わす特徴として,約600点を用いた4つの有害な結果のモデル化を行った。
以上の結果から, 人口統計学的変数は, 新型コロナウイルス感染後の副作用の予測因子として重要であるが, 過去の臨床記録の組み入れは, 信頼性の高い予測モデルに欠かせないことが示唆された。
論文 参考訳(メタデータ) (2020-08-10T02:44:52Z) - A Physiology-Driven Computational Model for Post-Cardiac Arrest Outcome
Prediction [0.7930054475711718]
本研究の目的は,CA後の結果を予測する計算モデルを構築することである。
我々は、生理的時系列(PTS)データの統合と機械学習(ML)分類器の訓練によりモデル性能を向上させることができると仮定した。
その結果, MLモデルによるCA後予測モデルの有効性が証明され, PTSが短期成績確率を符号化した後のごく初期段階に記録されることが示唆された。
論文 参考訳(メタデータ) (2020-02-09T07:53:50Z) - Short Term Blood Glucose Prediction based on Continuous Glucose
Monitoring Data [53.01543207478818]
本研究では,デジタル意思決定支援ツールの入力として連続グルコースモニタリング(Continuous Glucose Monitoring, CGM)データを利用する方法について検討する。
短時間の血液グルコース (STBG) 予測において, リカレントニューラルネットワーク (Recurrent Neural Networks, RNN) をどのように利用できるかを検討する。
論文 参考訳(メタデータ) (2020-02-06T16:39:44Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。