論文の概要: Motion Forecasting for Autonomous Vehicles: A Survey
- arxiv url: http://arxiv.org/abs/2502.08664v1
- Date: Mon, 10 Feb 2025 10:13:24 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-02-14 13:45:01.873846
- Title: Motion Forecasting for Autonomous Vehicles: A Survey
- Title(参考訳): 自動運転車のモーション予測:サーベイ
- Authors: Jianxin Shi, Jinhao Chen, Yuandong Wang, Li Sun, Chunyang Liu, Wei Xiong, Tianyu Wo,
- Abstract要約: 我々は、自動運転車のシナリオベースと知覚ベースのモーション予測の両方に焦点をあてる。
本研究は,教師付き学習と自己指導型学習の2つの主要なカテゴリに分類する。
本稿は、このAV技術の重要領域における進歩を推進すべく、潜在的研究の方向性を結論し、議論する。
- 参考スコア(独自算出の注目度): 14.23937193821042
- License:
- Abstract: In recent years, the field of autonomous driving has attracted increasingly significant public interest. Accurately forecasting the future behavior of various traffic participants is essential for the decision-making of Autonomous Vehicles (AVs). In this paper, we focus on both scenario-based and perception-based motion forecasting for AVs. We propose a formal problem formulation for motion forecasting and summarize the main challenges confronting this area of research. We also detail representative datasets and evaluation metrics pertinent to this field. Furthermore, this study classifies recent research into two main categories: supervised learning and self-supervised learning, reflecting the evolving paradigms in both scenario-based and perception-based motion forecasting. In the context of supervised learning, we thoroughly examine and analyze each key element of the methodology. For self-supervised learning, we summarize commonly adopted techniques. The paper concludes and discusses potential research directions, aiming to propel progress in this vital area of AV technology.
- Abstract(参考訳): 近年、自動運転の分野は次第に大衆の関心を惹きつけている。
自動運転車(AV)の意思決定には,様々な交通参加者の今後の行動の正確な予測が不可欠である。
本稿では,AVのシナリオベースと知覚ベースの動き予測に焦点をあてる。
本稿では,運動予測のための公式な問題定式化を提案し,この領域に直面する主な課題を要約する。
また、この分野に関連する代表的データセットと評価指標についても詳述する。
さらに,近年の研究では,教師付き学習と自己指導型学習の2つのカテゴリに分類し,シナリオベースと知覚に基づく動き予測の双方において,進化するパラダイムを反映した。
教師あり学習の文脈では,方法論の各要素を徹底的に検討し,分析する。
自己指導型学習では、一般的に採用されているテクニックを要約する。
本稿は、このAV技術の重要領域における進歩を推進すべく、潜在的研究の方向性を結論し、議論する。
関連論文リスト
- Human Action Anticipation: A Survey [86.415721659234]
行動予測に関する文献は、行動予測、活動予測、意図予測、目標予測など、様々なタスクにまたがる。
我々の調査は、この断片化された文献を結びつけることを目的としており、最近の技術革新とモデルトレーニングと評価のための新しい大規模データセットの開発をカバーしています。
論文 参考訳(メタデータ) (2024-10-17T21:37:40Z) - Social Interaction-Aware Dynamical Models and Decision Making for
Autonomous Vehicles [20.123965317836106]
IAAD(Interaction-Aware Autonomous Driving)は、急速に成長する研究分野である。
それは、人間の道路利用者と安全かつ効率的に対話できる自動運転車の開発に焦点を当てている。
これは、自動運転車が人間の道路利用者の行動を理解し予測できることを要求するため、困難な作業である。
論文 参考訳(メタデータ) (2023-10-29T03:43:50Z) - Data-driven Traffic Simulation: A Comprehensive Review [26.69987598795778]
データ駆動型微視的交通シミュレーションは、自律走行テストにとって重要なツールとなっている。
本稿では、データ駆動交通シミュレーションの一般的な問題を紹介し、重要な概念と用語を概説する。
そこで本研究では,模倣学習,強化学習,深層生成,深層学習を総合的に評価する。
論文 参考訳(メタデータ) (2023-10-24T16:25:13Z) - Machine Learning for Autonomous Vehicle's Trajectory Prediction: A
comprehensive survey, Challenges, and Future Research Directions [3.655021726150368]
AVの文脈における軌道予測に関する200以上の研究について検討した。
本総説では,いくつかの深層学習手法を総合的に評価する。
既存の文献の課題を特定し,潜在的研究の方向性を概説することにより,AV軌道予測領域における知識の進歩に大きく貢献する。
論文 参考訳(メタデータ) (2023-07-12T10:20:19Z) - Self-Supervised Representation Learning: Introduction, Advances and
Challenges [125.38214493654534]
自己教師付き表現学習手法は、大きな注釈付きデータセットを必要とせずに強力な機能学習を提供することを目的としている。
本稿では、この活気ある領域について、鍵となる概念、アプローチの4つの主要なファミリーと関連する技術の状態、そして、データの多様性に自己監督手法を適用する方法について紹介する。
論文 参考訳(メタデータ) (2021-10-18T13:51:22Z) - Safety-aware Motion Prediction with Unseen Vehicles for Autonomous
Driving [104.32241082170044]
本研究では,無人運転用無人車を用いた新しい作業,安全を意識した動作予測手法について検討する。
既存の車両の軌道予測タスクとは異なり、占有率マップの予測が目的である。
私たちのアプローチは、ほとんどの場合、目に見えない車両の存在を予測できる最初の方法です。
論文 参考訳(メタデータ) (2021-09-03T13:33:33Z) - Weakly Supervised Object Localization and Detection: A Survey [145.5041117184952]
オブジェクトのローカライゼーションと検出は、新しい世代のコンピュータビジョンシステムを開発する上で重要な役割を果たす。
本稿では,(1)古典的モデル,(2)既成の深層ネットワークの特徴表現を用いたアプローチ,(3)ディープラーニングのみに基づくアプローチ,(4)この分野で広く利用されている公開データセットと標準評価指標についてレビューする。
この分野における重要な課題、この分野の開発履歴、各カテゴリーの手法の利点/欠点、異なるカテゴリーの方法間の関係、弱い監督対象のローカリゼーションおよび検出方法の適用、およびこの研究分野の開発をさらに促進するための潜在的な将来の方向性について議論します。
論文 参考訳(メタデータ) (2021-04-16T06:44:50Z) - Just Label What You Need: Fine-Grained Active Selection for Perception
and Prediction through Partially Labeled Scenes [78.23907801786827]
提案手法は,コストに配慮した手法と,部分的にラベル付けされたシーンを通じて詳細なサンプル選択を可能にする一般化を導入している。
実世界の大規模自動運転データセットに関する我々の実験は、微粒な選択が知覚、予測、下流計画タスクのパフォーマンスを向上させることを示唆している。
論文 参考訳(メタデータ) (2021-04-08T17:57:41Z) - What-If Motion Prediction for Autonomous Driving [58.338520347197765]
生存可能なソリューションは、道路レーンのような静的な幾何学的文脈と、複数のアクターから生じる動的な社会的相互作用の両方を考慮しなければならない。
本稿では,解釈可能な幾何学的(アクター・レーン)と社会的(アクター・アクター)の関係を持つグラフに基づく注意的アプローチを提案する。
提案モデルでは,道路レーンやマルチアクターの相互作用を仮定的に,あるいは「何」かで予測できる。
論文 参考訳(メタデータ) (2020-08-24T17:49:30Z) - Deep Learning on Traffic Prediction: Methods, Analysis and Future
Directions [32.25707921285397]
本稿では,複数の観点からの交通予測における深層学習に基づくアプローチに関する包括的調査を行う。
まず,既存の交通予測手法を要約し,分類について述べる。
第2に、異なるトラフィック予測アプリケーションにおける最先端のアプローチをリストアップする。
論文 参考訳(メタデータ) (2020-04-18T08:28:10Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。