Chiral-Extended Photon-Emitter Dressed States in Non-Hermitian Topological Baths
- URL: http://arxiv.org/abs/2408.07603v2
- Date: Thu, 22 Aug 2024 15:19:34 GMT
- Title: Chiral-Extended Photon-Emitter Dressed States in Non-Hermitian Topological Baths
- Authors: Zhao-Fan Cai, Xin Wang, Zi-Xuan Liang, Tao Liu, Franco Nori,
- Abstract summary: We predict unconventional quantum optical behaviors of quantum emitters coupled to a non-Hermitian topological bath.
In addition to the Hermitian-like chiral bound states in the middle line gap and skin-mode-like hidden bound states inside the point gap, we identify peculiar in-gap chiral and extended photon-emitter dressed states.
- Score: 5.9025944049240575
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The interplay of quantum emitters and non-Hermitian structured baths has received increasing attention in recent years. Here, we predict unconventional quantum optical behaviors of quantum emitters coupled to a non-Hermitian topological bath, which is realized in a 1D Su-Schrieffer-Heeger photonic chain subjected to nonlocal dissipation. In addition to the Hermitian-like chiral bound states in the middle line gap and skin-mode-like hidden bound states inside the point gap, we identify peculiar in-gap chiral and extended photon-emitter dressed states. This is due to the competition of topological-edge localization and non-Hermitian skin-mode localization in combination with the non-Bloch bulk-boundary correspondence. Furthermore, when two emitters are coupled to the same bath, such in-gap dressed states can mediate the nonreciprocal long-range emitter-emitter interactions, with the interaction range limited only by the dissipation of the bath. Our work opens the door to further study rich quantum optical phenomena and exotic many-body physics utilizing quantum emitters coupled to non-Hermitian topological baths.
Related papers
- Non-Hermitian extended midgap states and bound states in the continuum [0.0]
We find two flavours of bound states in the continuum, both stable even in the absence of chiral symmetry.
Results clarify fundamental aspects of topology, and symmetry in the light of different approaches to the anomalous non-Hermitan bulk-boundary correspondence.
arXiv Detail & Related papers (2023-10-27T16:58:04Z) - Theory of non-Hermitian fermionic superfluidity on a honeycomb lattice:
Interplay between exceptional manifolds and van Hove Singularity [0.0]
We study the non-Hermitian fermionic superfluidity subject to dissipation of Cooper pairs on a honeycomb lattice.
We demonstrate the emergence of the dissipation-induced superfluid phase that is anomalously enlarged by a cusp on the phase boundary.
arXiv Detail & Related papers (2023-09-28T06:21:55Z) - The strongly driven Fermi polaron [49.81410781350196]
Quasiparticles are emergent excitations of matter that underlie much of our understanding of quantum many-body systems.
We take advantage of the clean setting of homogeneous quantum gases and fast radio-frequency control to manipulate Fermi polarons.
We measure the decay rate and the quasiparticle residue of the driven polaron from the Rabi oscillations between the two internal states.
arXiv Detail & Related papers (2023-08-10T17:59:51Z) - Measurement phase transitions in the no-click limit as quantum phase
transitions of a non-hermitean vacuum [77.34726150561087]
We study phase transitions occurring in the stationary state of the dynamics of integrable many-body non-Hermitian Hamiltonians.
We observe that the entanglement phase transitions occurring in the stationary state have the same nature as that occurring in the vacuum of the non-hermitian Hamiltonian.
arXiv Detail & Related papers (2023-01-18T09:26:02Z) - Topologically bound states, non-Hermitian skin effect and flat bands,
induced by two-particle interaction [91.3755431537592]
We study theoretically repelling quantum states of two spinless particles in a one-dimensional tight-binding model.
We demonstrate, that when the particles are not identical, their interaction drives nontrivial correlated two-particle states.
arXiv Detail & Related papers (2022-11-11T07:34:54Z) - Anomalous Behaviors of Quantum Emitters in Non-Hermitian Baths [0.0]
We show that a single quantum emitter coupled to a non-Hermitian bath displays a number of unconventional behaviours.
Our work points toward a rich landscape of anomalous quantum emitter dynamics induced by non-Hermitian baths.
arXiv Detail & Related papers (2022-05-11T13:22:24Z) - A non-Hermitian optical atomic mirror [6.023710971800604]
A high-reflectivity, non-Hermitian optical mirror can be realized by a two-dimensional subwavelength array of neutral atoms.
We show that exceptional points develop from a nondefective degeneracy by lowering the crystal symmetry of a square atomic lattice.
We also find, although the dipole-dipole interaction is reciprocal, the geometry-dependent non-Hermitian skin effect emerges.
arXiv Detail & Related papers (2021-10-19T15:55:59Z) - Non-Hermitian Edge Burst [1.6033520575204165]
We unveil an unexpected non-Hermitian phenomenon, dubbed edge burst, in non-Hermitian quantum dynamics.
Our predictions are experimentally accessible in various non-Hermitian systems including quantum-optical and cold-atom platforms.
arXiv Detail & Related papers (2021-09-29T18:00:03Z) - Observation-dependent suppression and enhancement of two-photon
coincidences by tailored losses [68.8204255655161]
Hong-Ou-Mandel (HOM) effect can lead to a perfect suppression of two-particle coincidences between the output ports of a balanced beam splitter.
In this work, we demonstrate experimentally that the two-particle coincidence statistics of two bosons can instead be seamlessly tuned to substantial enhancement.
Our findings reveal a new approach to harnessing non-Hermitian settings for the manipulation of multi-particle quantum states.
arXiv Detail & Related papers (2021-05-12T06:47:35Z) - Non-equilibrium stationary states of quantum non-Hermitian lattice
models [68.8204255655161]
We show how generic non-Hermitian tight-binding lattice models can be realized in an unconditional, quantum-mechanically consistent manner.
We focus on the quantum steady states of such models for both fermionic and bosonic systems.
arXiv Detail & Related papers (2021-03-02T18:56:44Z) - Quantum chaos driven by long-range waveguide-mediated interactions [125.99533416395765]
We study theoretically quantum states of a pair of photons interacting with a finite periodic array of two-level atoms in a waveguide.
Our calculation reveals two-polariton eigenstates that have a highly irregular wave-function in real space.
arXiv Detail & Related papers (2020-11-24T07:06:36Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.