論文の概要: Improving Deep Regression with Tightness
- arxiv url: http://arxiv.org/abs/2502.09122v1
- Date: Thu, 13 Feb 2025 09:57:25 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-02-14 13:50:47.656759
- Title: Improving Deep Regression with Tightness
- Title(参考訳): タイトネスによる深部回帰の改善
- Authors: Shihao Zhang, Yuguang Yan, Angela Yao,
- Abstract要約: この研究は、順序性を保存することは、条件エントロピー$H(Z|Y)$の表現を目標の$Y$の条件付きで$Z$に還元することを明らかにする。
特徴空間におけるターゲットの類似性を保ち、$H(Z|Y)$を減少させるために最適な輸送ベース正規化器を導入する。
3つの実世界の回帰タスクの実験は、我々の戦略の有効性を検証する。
- 参考スコア(独自算出の注目度): 37.65694510450536
- License:
- Abstract: For deep regression, preserving the ordinality of the targets with respect to the feature representation improves performance across various tasks. However, a theoretical explanation for the benefits of ordinality is still lacking. This work reveals that preserving ordinality reduces the conditional entropy $H(Z|Y)$ of representation $Z$ conditional on the target $Y$. However, our findings reveal that typical regression losses do little to reduce $H(Z|Y)$, even though it is vital for generalization performance. With this motivation, we introduce an optimal transport-based regularizer to preserve the similarity relationships of targets in the feature space to reduce $H(Z|Y)$. Additionally, we introduce a simple yet efficient strategy of duplicating the regressor targets, also with the aim of reducing $H(Z|Y)$. Experiments on three real-world regression tasks verify the effectiveness of our strategies to improve deep regression. Code: https://github.com/needylove/Regression_tightness.
- Abstract(参考訳): ディープレグレッションでは、特徴表現に関する目標の順序性を保つことにより、様々なタスクのパフォーマンスが向上する。
しかし、順序性の利点に関する理論的説明はいまだに欠けている。
この研究は、順序性を保存することは、条件エントロピー$H(Z|Y)$の表現を目標の$Y$の条件付きで$Z$に還元することを明らかにする。
しかし, 一般化性能には欠かせないが, 典型的な回帰損失は$H(Z|Y)$を下げることはほとんどないことがわかった。
このモチベーションにより、特徴空間におけるターゲットの類似性関係を保存するために最適な輸送ベース正規化器を導入し、$H(Z|Y)$を下げる。
さらに、回帰器ターゲットを複製する単純かつ効率的な戦略を導入するとともに、$H(Z|Y)$を減らそうとする。
3つの実世界の回帰タスクの実験は、深い回帰を改善するための戦略の有効性を検証する。
コード:https://github.com/needylove/Regression_tightness。
関連論文リスト
- Robust Nonparametric Regression under Poisoning Attack [13.470899588917716]
敵攻撃者は、$N$のトレーニングデータセットから最大$q$のサンプル値を変更することができる。
初期解法はハマー損失最小化に基づくM推定器である。
最後の見積もりは、任意の$q$に対してほぼ最小値であり、最大$ln N$ factorまでである。
論文 参考訳(メタデータ) (2023-05-26T09:33:17Z) - Optimal Sketching Bounds for Sparse Linear Regression [116.30196615349226]
我々は、$ell_p$ノルムや広範なヒンジ様損失関数のクラスから、様々な損失関数の下で、$k$スパース線形回帰の難読スケッチを研究する。
スパース$ell$varepsレグレッションの場合、$Theta(klog(d/k)/varepsilon2)$ rowsでスケッチの上に曖昧な分布が存在し、これは定数要素に固執することを示している。
また、$O(mu2 klog(mun d/varepsilon)/varのスケッチも示します。
論文 参考訳(メタデータ) (2023-04-05T07:24:19Z) - Revisiting Weighted Strategy for Non-stationary Parametric Bandits [82.1942459195896]
本稿では,非定常パラメトリックバンディットの重み付け戦略を再考する。
より単純な重みに基づくアルゴリズムを生成する改良された分析フレームワークを提案する。
我々の新しいフレームワークは、他のパラメトリックバンディットの後悔の限界を改善するのに使える。
論文 参考訳(メタデータ) (2023-03-05T15:11:14Z) - Hardness and Algorithms for Robust and Sparse Optimization [17.842787715567436]
スパース線形回帰やロバスト線形回帰といったスパース最適化問題に対するアルゴリズムと制限について検討する。
具体的には、スパース線型回帰問題は$k$-スパースベクトル$xinmathbbRd$を求め、$|Ax-b|$を最小化する。
頑健な線形回帰問題は、少なくとも$k$行を無視する集合$S$と、$|(Ax-b)_S|$を最小化するベクトル$x$を求める。
論文 参考訳(メタデータ) (2022-06-29T01:40:38Z) - Deletion and Insertion Tests in Regression Models [1.2891210250935148]
説明可能なAI(XAI)の基本課題は、ブラックボックス関数$f$による予測の背後にある最も重要な特徴を特定することである。
Petsiuk et al. Kernel の挿入と削除テストは、分類においてピクセルを最も重要視するアルゴリズムの品質を判断するために用いられる。
論文 参考訳(メタデータ) (2022-05-25T00:55:47Z) - Bottom-Up Human Pose Estimation Via Disentangled Keypoint Regression [81.05772887221333]
従来のキーポイント検出およびグループ化フレームワークに劣る密度の高いキーポイント回帰フレームワークについて検討する。
我々は,dekr(disentangled keypoint regression)という,単純かつ効果的な手法を提案する。
提案手法はキーポイント検出法やグループ化法よりも優れていることを示す。
論文 参考訳(メタデータ) (2021-04-06T05:54:46Z) - Online nonparametric regression with Sobolev kernels [99.12817345416846]
我々は、ソボレフ空間のクラス上の後悔の上限を$W_pbeta(mathcalX)$, $pgeq 2, beta>fracdp$ とする。
上界は minimax regret analysis で支えられ、$beta> fracd2$ または $p=infty$ の場合、これらの値は(本質的に)最適である。
論文 参考訳(メタデータ) (2021-02-06T15:05:14Z) - Query Complexity of Least Absolute Deviation Regression via Robust
Uniform Convergence [26.51921319084656]
最小絶対偏差回帰のクエリ複雑性は、対数係数まで$Theta(d/epsilon2)$であることを示す。
我々は、経験的損失に対する新しい近似保証である、頑健な一様収束の概念を導入する。
論文 参考訳(メタデータ) (2021-02-03T22:54:27Z) - Truncated Linear Regression in High Dimensions [26.41623833920794]
truncated linear regression において、従属変数 $(A_i, y_i)_i$ は $y_i= A_irm T cdot x* + eta_i$ は固定された未知の興味ベクトルである。
目標は、$A_i$とノイズ分布に関するいくつかの好ましい条件の下で$x*$を回復することである。
我々は、$k$-sparse $n$-dimensional vectors $x*$ from $m$ truncated sample。
論文 参考訳(メタデータ) (2020-07-29T00:31:34Z) - RepPoints V2: Verification Meets Regression for Object Detection [65.120827759348]
本稿ではRepPointsのローカライズ予測に検証タスクを導入する。
RepPoints v2は、オリジナルのRepPointsよりも約2.0mAPの一貫性のある改善を提供する。
提案手法は、インスタンスセグメンテーションのようなアプリケーションと同様に、他のオブジェクト検出フレームワークをより高めることができることを示す。
論文 参考訳(メタデータ) (2020-07-16T17:57:08Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。