論文の概要: On LLM-generated Logic Programs and their Inference Execution Methods
- arxiv url: http://arxiv.org/abs/2502.09209v1
- Date: Thu, 13 Feb 2025 11:47:44 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-02-14 13:48:41.212161
- Title: On LLM-generated Logic Programs and their Inference Execution Methods
- Title(参考訳): LLM生成論理プログラムとその推論実行法について
- Authors: Paul Tarau,
- Abstract要約: 1ペタバイトのデータに基づいて訓練された大規模言語モデル(LLM)は、これまで蓄積され蒸留された知識のかなりの割合の高度に圧縮されたリポジトリである。
本稿では,この知識を数種類の論理プログラムの形式で抽出する手法について検討する。
- 参考スコア(独自算出の注目度): 0.0
- License:
- Abstract: Large Language Models (LLMs) trained on petabytes of data are highly compressed repositories of a significant proportion of the knowledge accumulated and distilled so far. In this paper we study techniques to elicit this knowledge in the form of several classes of logic programs, including propositional Horn clauses, Dual Horn clauses, relational triplets and Definite Clause Grammars. Exposing this knowledge as logic programs enables sound reasoning methods that can verify alignment of LLM outputs to their intended uses and extend their inference capabilities. We study new execution methods for the generated programs, including soft-unification of abducible facts against LLM-generated content stored in a vector database as well as GPU-based acceleration of minimal model computation that supports inference with large LLM-generated programs.
- Abstract(参考訳): 1ペタバイトのデータに基づいて訓練された大規模言語モデル(LLM)は、これまで蓄積され蒸留された知識のかなりの割合の高度に圧縮されたリポジトリである。
本稿では,この知識を,命題ホルン節,デュアルホーン節,リレーショナル三重項,定格クロース文法など,数種類の論理プログラムの形式で引き出す手法について検討する。
この知識を論理プログラムとして公開することにより、LLM出力のアライメントを意図した用途に検証し、推論機能を拡張することができる。
ベクトルデータベースに格納されたLLM生成コンテンツに対して、認識可能な事実のソフト統一化や、大規模LLM生成プログラムでの推論をサポートする最小モデル計算のGPUベースのアクセラレーションを含む、生成されたプログラムの新たな実行方法について検討する。
関連論文リスト
- Reasoning-as-Logic-Units: Scaling Test-Time Reasoning in Large Language Models Through Logic Unit Alignment [21.12989936864145]
CoT(Chain-of-Thought)のプロンプトによって,大規模言語モデル(LLM)の推論能力の向上が期待できる。
本稿では、生成したプログラムと対応するNL記述との間に論理単位を整列させることにより、より信頼性の高い推論経路を構築するReasoning-as-Logic-Units (RaLU)を提案する。
論文 参考訳(メタデータ) (2025-02-05T08:23:18Z) - RuAG: Learned-rule-augmented Generation for Large Language Models [62.64389390179651]
本稿では,大量のオフラインデータを解釈可能な一階述語論理規則に自動抽出する新しいフレームワーク,RuAGを提案する。
我々は,自然言語処理,時系列,意思決定,産業タスクなど,公共および民間の産業タスクに関する枠組みを評価する。
論文 参考訳(メタデータ) (2024-11-04T00:01:34Z) - Studying and Benchmarking Large Language Models For Log Level Suggestion [49.176736212364496]
大規模言語モデル(LLM)は、様々な領域で研究の焦点となっている。
本稿では,12個のオープンソースLCMのログレベル提案における性能に及ぼす特性と学習パラダイムの影響について検討する。
論文 参考訳(メタデータ) (2024-10-11T03:52:17Z) - zsLLMCode: An Effective Approach for Functional Code Embedding via LLM with Zero-Shot Learning [6.976968804436321]
大型言語モデル(LLM)はゼロショット学習の能力を持ち、訓練や微調整を必要としない。
LLMを用いた関数型コード埋め込みを生成する新しいアプローチであるzsLLMCodeを提案する。
論文 参考訳(メタデータ) (2024-09-23T01:03:15Z) - On the Design and Analysis of LLM-Based Algorithms [74.7126776018275]
大規模言語モデル(LLM)はアルゴリズムのサブルーチンとして使用される。
LLMは素晴らしい経験的成功を収めた。
提案フレームワークは,LLMアルゴリズムの進歩を約束する。
論文 参考訳(メタデータ) (2024-07-20T07:39:07Z) - Large Language Models are Interpretable Learners [53.56735770834617]
本稿では,Large Language Models(LLM)とシンボルプログラムの組み合わせによって,表現性と解釈可能性のギャップを埋めることができることを示す。
自然言語プロンプトを持つ事前訓練されたLLMは、生の入力を自然言語の概念に変換することができる解釈可能な膨大なモジュールセットを提供する。
LSPが学んだ知識は自然言語の記述と記号規則の組み合わせであり、人間(解釈可能)や他のLLMに容易に転送できる。
論文 参考訳(メタデータ) (2024-06-25T02:18:15Z) - Q*: Improving Multi-step Reasoning for LLMs with Deliberative Planning [53.6472920229013]
大規模言語モデル(LLM)は多くの自然言語タスクにおいて印象的な能力を示している。
LLMは多段階推論を行う際にエラー、幻覚、矛盾する文を生成する傾向がある。
本稿では,LLMの復号化過程を検討計画で導くためのフレームワークであるQ*を紹介する。
論文 参考訳(メタデータ) (2024-06-20T13:08:09Z) - Can Language Models Pretend Solvers? Logic Code Simulation with LLMs [3.802945676202634]
トランスフォーマーベースの大規模言語モデル(LLM)は、論理問題に対処する上で大きな可能性を示している。
この研究は、論理コードシミュレーションという新しい側面に発展し、論理プログラムの結果を予測するために論理解法をエミュレートするよう LLM に強制する。
論文 参考訳(メタデータ) (2024-03-24T11:27:16Z) - If LLM Is the Wizard, Then Code Is the Wand: A Survey on How Code
Empowers Large Language Models to Serve as Intelligent Agents [81.60906807941188]
大型言語モデル(LLM)は、自然言語と形式言語(コード)の組み合わせに基づいて訓練される
コードは、標準構文、論理一貫性、抽象化、モジュール性を備えた高レベルの目標を実行可能なステップに変換する。
論文 参考訳(メタデータ) (2024-01-01T16:51:20Z) - The potential of LLMs for coding with low-resource and domain-specific
programming languages [0.0]
本研究は,オープンソースソフトウェアGreetlのハンスル(Hansl)という,econometricスクリプティング言語に焦点を当てたものである。
この結果から, LLMはグレタブルコードの記述, 理解, 改善, 文書化に有用なツールであることが示唆された。
論文 参考訳(メタデータ) (2023-07-24T17:17:13Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。