論文の概要: Rolling Ahead Diffusion for Traffic Scene Simulation
- arxiv url: http://arxiv.org/abs/2502.09587v1
- Date: Thu, 13 Feb 2025 18:45:56 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-02-14 13:47:21.644816
- Title: Rolling Ahead Diffusion for Traffic Scene Simulation
- Title(参考訳): 交通現場シミュレーションのためのローリングヘッド拡散
- Authors: Yunpeng Liu, Matthew Niedoba, William Harvey, Adam Scibior, Berend Zwartsenberg, Frank Wood,
- Abstract要約: 現実的な運転シミュレーションでは、NPCは自然運転の振る舞いを模倣するだけでなく、他の模擬エージェントの挙動に反応する。
拡散に基づくシナリオ生成の最近の発展は、多様で現実的なトラフィックシナリオの作成に焦点を当てている。
両手法の利点を混合した転がり拡散に基づく交通シーン生成モデルを提案する。
- 参考スコア(独自算出の注目度): 13.900806577888861
- License:
- Abstract: Realistic driving simulation requires that NPCs not only mimic natural driving behaviors but also react to the behavior of other simulated agents. Recent developments in diffusion-based scenario generation focus on creating diverse and realistic traffic scenarios by jointly modelling the motion of all the agents in the scene. However, these traffic scenarios do not react when the motion of agents deviates from their modelled trajectories. For example, the ego-agent can be controlled by a stand along motion planner. To produce reactive scenarios with joint scenario models, the model must regenerate the scenario at each timestep based on new observations in a Model Predictive Control (MPC) fashion. Although reactive, this method is time-consuming, as one complete possible future for all NPCs is generated per simulation step. Alternatively, one can utilize an autoregressive model (AR) to predict only the immediate next-step future for all NPCs. Although faster, this method lacks the capability for advanced planning. We present a rolling diffusion based traffic scene generation model which mixes the benefits of both methods by predicting the next step future and simultaneously predicting partially noised further future steps at the same time. We show that such model is efficient compared to diffusion model based AR, achieving a beneficial compromise between reactivity and computational efficiency.
- Abstract(参考訳): 現実的な運転シミュレーションでは、NPCは自然運転の振る舞いを模倣するだけでなく、他の模擬エージェントの挙動に反応する。
拡散型シナリオ生成の最近の進歩は、シーン内のすべてのエージェントの動きを共同でモデル化することによって、多様で現実的な交通シナリオを作成することに焦点を当てている。
しかし、これらの交通シナリオは、エージェントの運動がモデル化された軌道から逸脱したときには反応しない。
例えば、エゴエージェントは、移動プランナーに沿ってスタンドで制御することができる。
共同シナリオモデルでリアクティブシナリオを生成するためには、モデル予測制御(MPC)方式の新しい観測に基づいて、各タイミングでシナリオを再生する必要がある。
応答性はあるものの、この手法は時間を要するため、シミュレーションステップ毎に全NPCの完全な未来が生成される。
あるいは、自動回帰モデル(AR)を使用して、すべてのNPCに対してすぐに次のステップを予測できる。
高速ではあるが、この方法は高度な計画能力に欠ける。
本稿では,次のステップを予測し,同時に部分的にノイズのある将来のステップを同時に予測することにより,両手法の利点を混合した転がり拡散に基づく交通シーン生成モデルを提案する。
このようなモデルは拡散モデルに基づくARと比較して効率的であることを示し、反応性と計算効率の良好な妥協を実現する。
関連論文リスト
- Vectorized Representation Dreamer (VRD): Dreaming-Assisted Multi-Agent Motion-Forecasting [2.2020053359163305]
マルチエージェント動作予測問題に対するベクトル化された世界モデルに基づくアプローチであるVRDを紹介する。
本手法では,従来のオープンループトレーニングシステムと,新しい夢のクローズループトレーニングパイプラインを組み合わせる。
本モデルでは,1つの予測ミスレート測定値に対して,最先端の性能を実現する。
論文 参考訳(メタデータ) (2024-06-20T15:34:17Z) - Planning with Adaptive World Models for Autonomous Driving [50.4439896514353]
運動プランナー(MP)は複雑な都市環境における安全なナビゲーションに不可欠である。
最近リリースされたMPベンチマークであるnuPlanは、クローズドループシミュレーションロジックで現実世界の駆動ログを拡張することで、この制限に対処している。
本稿では,モデル予測制御(MPC)ベースのプランナであるAdaptiveDriverを提案する。
論文 参考訳(メタデータ) (2024-06-15T18:53:45Z) - AMP: Autoregressive Motion Prediction Revisited with Next Token Prediction for Autonomous Driving [59.94343412438211]
本稿では,GPT方式の次のトークン動作予測を動作予測に導入する。
同種単位-ワードからなる言語データとは異なり、運転シーンの要素は複雑な空間的・時間的・意味的な関係を持つ可能性がある。
そこで本稿では,情報集約と位置符号化スタイルの異なる3つの因子化アテンションモジュールを用いて,それらの関係を捉えることを提案する。
論文 参考訳(メタデータ) (2024-03-20T06:22:37Z) - Tractable Joint Prediction and Planning over Discrete Behavior Modes for
Urban Driving [15.671811785579118]
自己回帰閉ループモデルのパラメータ化は,再学習を伴わずに可能であることを示す。
離散潜在モード上での完全反応性閉ループ計画を提案する。
当社のアプローチは、CARLAにおける従来の最先端技術よりも、高密度なトラフィックシナリオに挑戦する上で優れています。
論文 参考訳(メタデータ) (2024-03-12T01:00:52Z) - Trajeglish: Traffic Modeling as Next-Token Prediction [67.28197954427638]
自動運転開発における長年の課題は、記録された運転ログからシードされた動的運転シナリオをシミュレートすることだ。
車両、歩行者、サイクリストが運転シナリオでどのように相互作用するかをモデル化するために、離散シーケンスモデリングのツールを適用します。
我々のモデルはSim Agents Benchmarkを上回り、リアリズムメタメトリックの先行作業の3.3%、インタラクションメトリックの9.9%を上回ります。
論文 参考訳(メタデータ) (2023-12-07T18:53:27Z) - SceneDM: Scene-level Multi-agent Trajectory Generation with Consistent
Diffusion Models [10.057312592344507]
本研究では,SceneDMと呼ばれる拡散モデルに基づく新しいフレームワークを提案する。
SceneDMはSim Agents Benchmarkで最先端の結果を得る。
論文 参考訳(メタデータ) (2023-11-27T11:39:27Z) - A Diffusion-Model of Joint Interactive Navigation [14.689298253430568]
本稿では,交通シナリオを生成する拡散に基づくDJINNを提案する。
我々のアプローチは、過去、現在、未来からのフレキシブルな状態観察のセットに基づいて、全てのエージェントの軌跡を共同で拡散させる。
本稿では,DJINNが様々な条件分布からの直接的テスト時間サンプリングを柔軟に行う方法を示す。
論文 参考訳(メタデータ) (2023-09-21T22:10:20Z) - TrafficBots: Towards World Models for Autonomous Driving Simulation and
Motion Prediction [149.5716746789134]
我々は,データ駆動型交通シミュレーションを世界モデルとして定式化できることを示した。
動作予測とエンドツーエンドの運転に基づくマルチエージェントポリシーであるTrafficBotsを紹介する。
オープンモーションデータセットの実験は、TrafficBotsが現実的なマルチエージェント動作をシミュレートできることを示している。
論文 参考訳(メタデータ) (2023-03-07T18:28:41Z) - TrafficSim: Learning to Simulate Realistic Multi-Agent Behaviors [74.67698916175614]
リアル交通シミュレーションのためのマルチエージェント行動モデルであるTrafficSimを提案する。
特に、暗黙の潜在変数モデルを利用して、共同アクターポリシーをパラメータ化する。
TrafficSimは、多様なベースラインと比較して、より現実的で多様なトラフィックシナリオを生成します。
論文 参考訳(メタデータ) (2021-01-17T00:29:30Z) - Instance-Aware Predictive Navigation in Multi-Agent Environments [93.15055834395304]
エージェント間の相互作用と将来のシーン構造を予測するIPC(Instance-Aware Predictive Control)アプローチを提案する。
我々は,ego中心の視点でエージェント間のインタラクションを推定するために,新しいマルチインスタンスイベント予測モジュールを採用する。
シーンレベルとインスタンスレベルの両方の予測状態をより有効活用するために、一連のアクションサンプリング戦略を設計します。
論文 参考訳(メタデータ) (2021-01-14T22:21:25Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。