論文の概要: Weight Space Representation Learning on Diverse NeRF Architectures
- arxiv url: http://arxiv.org/abs/2502.09623v2
- Date: Thu, 29 May 2025 17:59:55 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-05-30 18:14:07.362237
- Title: Weight Space Representation Learning on Diverse NeRF Architectures
- Title(参考訳): 横型NeRFアーキテクチャによる重み空間表現学習
- Authors: Francesco Ballerini, Pierluigi Zama Ramirez, Samuele Salti, Luigi Di Stefano,
- Abstract要約: 多様なアーキテクチャでNeRFを処理し、トレーニング時に見つからないアーキテクチャを推論する最初のフレームワークを紹介します。
3つのファミリーに属する13のNeRFアーキテクチャ(MLP、トリプレーン、および初めてハッシュテーブル)で実施された実験では、分類および検索タスクにおいて堅牢な性能を示す。
- 参考スコア(独自算出の注目度): 18.308429148476108
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Neural Radiance Fields (NeRFs) have emerged as a groundbreaking paradigm for representing 3D objects and scenes by encoding shape and appearance information into the weights of a neural network. Recent studies have demonstrated that these weights can be used as input for frameworks designed to address deep learning tasks; however, such frameworks require NeRFs to adhere to a specific, predefined architecture. In this paper, we introduce the first framework capable of processing NeRFs with diverse architectures and performing inference on architectures unseen at training time. We achieve this by training a Graph Meta-Network within an unsupervised representation learning framework, and show that a contrastive objective is conducive to obtaining an architecture-agnostic latent space. In experiments conducted across 13 NeRF architectures belonging to three families (MLPs, tri-planes, and, for the first time, hash tables), our approach demonstrates robust performance in classification and retrieval tasks involving multiple architectures, even unseen at training time, while also exceeding the results of existing frameworks limited to single architectures.
- Abstract(参考訳): ニューラルネットワークの重みに形状や外観情報をエンコードすることで、3Dオブジェクトやシーンを表現するための基盤となるパラダイムとして、NeRF(Neural Radiance Fields)が登場した。
近年の研究では、これらの重み付けがディープラーニングタスクに対処するために設計されたフレームワークの入力として利用できることが示されている。
本稿では,多様なアーキテクチャでNeRFを処理し,トレーニング時に見つからないアーキテクチャの推論を行う,最初のフレームワークを紹介する。
我々は、教師なし表現学習フレームワーク内でグラフメタネットワークを訓練し、アーキテクチャに依存しない潜在空間を得るための対照的な目的を示す。
3つのファミリーに属する13のNeRFアーキテクチャ(MLP、三面体、および初めてハッシュテーブル)で実施された実験では、複数のアーキテクチャを含む分類および検索タスクにおいて、トレーニング時にも見えず、かつ、単一のアーキテクチャに限定された既存のフレームワークの結果を上回る、堅牢な性能を示す。
関連論文リスト
- Multi-conditioned Graph Diffusion for Neural Architecture Search [8.290336491323796]
本稿では、離散的な条件付きグラフ拡散プロセスを用いて、高性能ニューラルネットワークアーキテクチャを生成するグラフ拡散に基づくNAS手法を提案する。
6つの標準ベンチマークで有望な結果を示し、新しいアーキテクチャとユニークなアーキテクチャを高速に実現します。
論文 参考訳(メタデータ) (2024-03-09T21:45:31Z) - DiffusionNAG: Predictor-guided Neural Architecture Generation with Diffusion Models [56.584561770857306]
本研究では拡散モデルに基づく新しい条件付きニューラルネットワーク生成(NAG)フレームワークDiffusionNAGを提案する。
具体的には、ニューラルネットワークを有向グラフとみなし、それらを生成するためのグラフ拡散モデルを提案する。
本研究では,2つの予測型NAS(Transferable NAS)とベイズ最適化(BO)に基づくNAS(Bayesian Optimization)の2つのシナリオにおいて,DiffusionNAGの有効性を検証する。
BOベースのアルゴリズムに統合されると、DiffusionNAGは既存のBOベースのNASアプローチ、特にImageNet 1Kデータセット上の大規模なMobileNetV3検索スペースよりも優れている。
論文 参考訳(メタデータ) (2023-05-26T13:58:18Z) - Equivariant Architectures for Learning in Deep Weight Spaces [54.61765488960555]
重み空間の学習のための新しいネットワークアーキテクチャを提案する。
入力として、事前訓練された不変量の重みとバイアスの連結をとる。
これらのレイヤを3つの基本的な操作で実装する方法を示す。
論文 参考訳(メタデータ) (2023-01-30T10:50:33Z) - GENNAPE: Towards Generalized Neural Architecture Performance Estimators [25.877126553261434]
GENNAPEは、与えられたニューラルネットワークを、原子操作の計算グラフ(CG)として表現する。
最初に、トポロジ的特徴によるネットワーク分離を促進するために、Contrastive Learningを介してグラフエンコーダを学習する。
実験により、NAS-Bench-101で事前訓練されたGENNAPEは、5つの異なる公開ニューラルネットワークベンチマークに優れた転送性が得られることが示された。
論文 参考訳(メタデータ) (2022-11-30T18:27:41Z) - One-Shot Neural Fields for 3D Object Understanding [112.32255680399399]
ロボット工学のための統一的でコンパクトなシーン表現を提案する。
シーン内の各オブジェクトは、幾何学と外観をキャプチャする潜在コードによって描写される。
この表現は、新しいビューレンダリングや3D再構成、安定した把握予測といった様々なタスクのためにデコードできる。
論文 参考訳(メタデータ) (2022-10-21T17:33:14Z) - Learning Interpretable Models Through Multi-Objective Neural
Architecture Search [0.9990687944474739]
本稿では,タスク性能と「イントロスペクタビリティ」の両方を最適化するフレームワークを提案する。
タスクエラーとイントロスペクタビリティを共同で最適化することは、エラー内で実行されるより不整合でデバッグ可能なアーキテクチャをもたらすことを実証する。
論文 参考訳(メタデータ) (2021-12-16T05:50:55Z) - Self-Denoising Neural Networks for Few Shot Learning [66.38505903102373]
既存のニューラルアーキテクチャの複数の段階でノイズを追加すると同時に、この付加ノイズに対して堅牢であるように学習する新しいトレーニングスキームを提案する。
このアーキテクチャは、SDNN(Self-Denoising Neural Network)と呼ばれ、現代の畳み込みニューラルネットワークに容易に適用できます。
論文 参考訳(メタデータ) (2021-10-26T03:28:36Z) - Learning Versatile Neural Architectures by Propagating Network Codes [74.2450894473073]
アーキテクチャの性能を複数のデータセットやタスクで予測できる新しい「神経予測器」を提案する。
ncpはネットワークコードから学習するが、オリジナルデータではないため、データセット間で効率的にアーキテクチャを更新することができる。
論文 参考訳(メタデータ) (2021-03-24T15:20:38Z) - NAS-DIP: Learning Deep Image Prior with Neural Architecture Search [65.79109790446257]
近年の研究では、深部畳み込みニューラルネットワークの構造が、以前に構造化された画像として利用できることが示されている。
我々は,より強い画像の先行を捉えるニューラルネットワークの探索を提案する。
既存のニューラルネットワーク探索アルゴリズムを利用して,改良されたネットワークを探索する。
論文 参考訳(メタデータ) (2020-08-26T17:59:36Z) - SkeletonNet: A Topology-Preserving Solution for Learning Mesh
Reconstruction of Object Surfaces from RGB Images [85.66560542483286]
本稿では,RGB画像から3次元物体表面再構成を学習する上での課題に焦点を当てる。
我々は,SkeGCNNとSkeDISNの2つのモデルを提案する。
提案するSkeletonNetの有効性を検証するための徹底的な実験を行った。
論文 参考訳(メタデータ) (2020-08-13T07:59:25Z) - Interpretable Neural Architecture Search via Bayesian Optimisation with
Weisfeiler-Lehman Kernels [17.945881805452288]
現在のニューラルアーキテクチャサーチ(NAS)戦略は、単一の優れたアーキテクチャを見つけることに集中している。
そこで我々は,Weisfeiler-Lehmanグラフカーネルとガウス過程サロゲートを組み合わせたNASに対するベイズ最適化手法を提案する。
提案手法は,有用なネットワーク特徴とそれに伴うネットワーク性能への影響を発見することによって,解釈可能性を実現する。
論文 参考訳(メタデータ) (2020-06-13T04:10:34Z) - A Semi-Supervised Assessor of Neural Architectures [157.76189339451565]
我々は、ニューラルネットワークの有意義な表現を見つけるためにオートエンコーダを用いる。
アーキテクチャの性能を予測するために、グラフ畳み込みニューラルネットワークを導入する。
論文 参考訳(メタデータ) (2020-05-14T09:02:33Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。