論文の概要: Making Them a Malicious Database: Exploiting Query Code to Jailbreak Aligned Large Language Models
- arxiv url: http://arxiv.org/abs/2502.09723v1
- Date: Thu, 13 Feb 2025 19:13:03 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-02-17 14:48:07.968577
- Title: Making Them a Malicious Database: Exploiting Query Code to Jailbreak Aligned Large Language Models
- Title(参考訳): 悪意のあるデータベースを作る - クエリコードをジェイルブレークした大規模言語モデルにエクスプロイトする
- Authors: Qingsong Zou, Jingyu Xiao, Qing Li, Zhi Yan, Yuhang Wang, Li Xu, Wenxuan Wang, Kuofeng Gao, Ruoyu Li, Yong Jiang,
- Abstract要約: 安全アライメントの一般化性を検討するためのフレームワークであるQueryAttackを提案する。
LLMを知識データベースとして扱うことで、自然言語の悪意あるクエリをコードスタイルの構造化クエリに変換し、安全アライメント機構をバイパスする。
QueryAttack に対する防御策として,GPT-4-1106 上で ASR を最大 64% 削減できる防御法を調整する。
- 参考スコア(独自算出の注目度): 44.27350994698781
- License:
- Abstract: Recent advances in large language models (LLMs) have demonstrated remarkable potential in the field of natural language processing. Unfortunately, LLMs face significant security and ethical risks. Although techniques such as safety alignment are developed for defense, prior researches reveal the possibility of bypassing such defenses through well-designed jailbreak attacks. In this paper, we propose QueryAttack, a novel framework to systematically examine the generalizability of safety alignment. By treating LLMs as knowledge databases, we translate malicious queries in natural language into code-style structured query to bypass the safety alignment mechanisms of LLMs. We conduct extensive experiments on mainstream LLMs, ant the results show that QueryAttack achieves high attack success rates (ASRs) across LLMs with different developers and capabilities. We also evaluate QueryAttack's performance against common defenses, confirming that it is difficult to mitigate with general defensive techniques. To defend against QueryAttack, we tailor a defense method which can reduce ASR by up to 64\% on GPT-4-1106. The code of QueryAttack can be found on https://anonymous.4open.science/r/QueryAttack-334B.
- Abstract(参考訳): 大規模言語モデル(LLM)の最近の進歩は、自然言語処理の分野において顕著な可能性を示している。
残念ながら、LLMは重大なセキュリティと倫理上のリスクに直面している。
安全アライメントなどの技術は防衛のために開発されているが、以前の研究では、よく設計されたジェイルブレイク攻撃によってそのような防衛をバイパスする可能性を明らかにしていた。
本稿では,安全アライメントの一般化性を体系的に検証する新しいフレームワークであるQueryAttackを提案する。
LLMを知識データベースとして扱うことにより、LLMの安全アライメント機構を回避するために、自然言語の悪意あるクエリをコードスタイルの構造化クエリに変換する。
この結果から、QueryAttackは、開発者や能力の異なるLLM全体で高い攻撃成功率(ASR)を達成することが示された。
また、QueryAttackの性能を一般的な防御技術で緩和することが困難であることを確認した。
QueryAttackに対抗するために、GPT-4-1106上で最大64\%のASRを削減できる防御方法を調整する。
QueryAttackのコードはhttps://anonymous.4open.science/r/QueryAttack-334Bにある。
関連論文リスト
- Does Safety Training of LLMs Generalize to Semantically Related Natural Prompts? [32.583583725567834]
LLM(Large Language Models)は、敵の攻撃やジェイルブレイクの影響を受けやすい言語である。
安全調整されたLLMがアライメント後の安全応答を誘発する自然的プロンプトに対して安全かどうかを評価する。
論文 参考訳(メタデータ) (2024-12-04T11:36:37Z) - SQL Injection Jailbreak: A Structural Disaster of Large Language Models [71.55108680517422]
LLMの外部特性をターゲットとした新しいジェイルブレイク手法を提案する。
ユーザプロンプトにジェイルブレイク情報を注入することで、SIJは有害なコンテンツを出力するモデルをうまく誘導する。
本稿では,SIJに対抗するために,セルフリマインダーキーと呼ばれる単純な防御手法を提案する。
論文 参考訳(メタデータ) (2024-11-03T13:36:34Z) - Towards Understanding the Fragility of Multilingual LLMs against Fine-Tuning Attacks [18.208272960774337]
LLM(Large Language Models)は、その安全性に対する幅広い懸念を引き起こしている。
近年の研究では, 微調整によりLLMの安全性の整合性を容易に除去できることが示されている。
我々は,多言語LLMにおける微調整攻撃の理解をさらに進める。
論文 参考訳(メタデータ) (2024-10-23T18:27:36Z) - Jailbreaking Large Language Models Through Alignment Vulnerabilities in Out-of-Distribution Settings [57.136748215262884]
本稿では,ObscurePrompt for jailbreaking LLMを紹介し,OOD(Out-of-Distribution)データにおける脆弱なアライメントに着想を得た。
まず、脱獄過程における決定境界を定式化し、次にLLMの倫理的決定境界に不明瞭な文章がどう影響するかを考察する。
本手法は,2つの防御機構に対する有効性を保ちながら,攻撃効果の観点から従来の手法を大幅に改善する。
論文 参考訳(メタデータ) (2024-06-19T16:09:58Z) - Defending Large Language Models Against Jailbreak Attacks via Layer-specific Editing [14.094372002702476]
大規模言語モデル(LLM)は、広範囲の現実世界のアプリケーションで採用されつつある。
近年の研究では、LSMは故意に構築された敵のプロンプトに弱いことが示されている。
そこで本研究では,新しい防衛手法である textbfLayer-specific textbfEditing (LED) を提案する。
論文 参考訳(メタデータ) (2024-05-28T13:26:12Z) - Weak-to-Strong Jailbreaking on Large Language Models [96.50953637783581]
大規模言語モデル(LLM)は、ジェイルブレイク攻撃に対して脆弱である。
既存のジェイルブレイク法は計算コストがかかる。
我々は、弱々しく強固な脱獄攻撃を提案する。
論文 参考訳(メタデータ) (2024-01-30T18:48:37Z) - Analyzing the Inherent Response Tendency of LLMs: Real-World
Instructions-Driven Jailbreak [26.741029482196534]
大規模言語モデル(LLM)が悪意ある指示に直面すると有害な応答を発生させる現象である。
本稿では,LDMのポテンシャルを増幅することでセキュリティ機構をバイパスし,肯定応答を生成する新しい自動ジェイルブレイク手法RADIALを提案する。
提案手法は,5つのオープンソースのLLMを用いて,英語の悪意のある命令に対する攻撃性能を良好に向上すると同時に,中国語の悪意のある命令に対するクロス言語攻撃の実行において,堅牢な攻撃性能を維持する。
論文 参考訳(メタデータ) (2023-12-07T08:29:58Z) - A Wolf in Sheep's Clothing: Generalized Nested Jailbreak Prompts can Fool Large Language Models Easily [51.63085197162279]
大きな言語モデル(LLM)は有用で安全な応答を提供するように設計されている。
ジェイルブレイク」と呼ばれる 敵のプロンプトは 保護を回避できる
有効なジェイルブレイクプロンプトを生成するためにLLM自体を活用する自動フレームワークであるReNeLLMを提案する。
論文 参考訳(メタデータ) (2023-11-14T16:02:16Z) - Multilingual Jailbreak Challenges in Large Language Models [96.74878032417054]
本研究では,大規模言語モデル(LLM)における多言語ジェイルブレイク問題の存在を明らかにする。
我々は、意図しないシナリオと意図的なシナリオの2つを考えます。
安全な微調整のための多言語学習データを自動的に生成する新しいtextscSelf-Defense フレームワークを提案する。
論文 参考訳(メタデータ) (2023-10-10T09:44:06Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。