論文の概要: Adaptive Teaming in Multi-Drone Pursuit: Simulation, Training, and Deployment
- arxiv url: http://arxiv.org/abs/2502.09762v1
- Date: Thu, 13 Feb 2025 20:45:48 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-02-17 14:44:45.916206
- Title: Adaptive Teaming in Multi-Drone Pursuit: Simulation, Training, and Deployment
- Title(参考訳): マルチドローパースーツにおけるアダプティブ・チーム:シミュレーション,トレーニング,展開
- Authors: Yang Li, Junfan Chen, Feng Xue, Jiabin Qiu, Wenbin Li, Qingrui Zhang, Ying Wen, Wei Pan,
- Abstract要約: 本稿では,多流体協調追尾における適応型チームリングに焦点を当てた。
これは国境監視、捜索救助、対テロなどの現実世界の応用にとって重要な課題である。
私たちの知る限りでは、AT-MDPフレームワークは、複雑な現実世界のドローンタスクにおいて、継続的行動決定のための最初の適応フレームワークである。
- 参考スコア(独自算出の注目度): 23.110351678527017
- License:
- Abstract: Adaptive teaming, the ability to collaborate with unseen teammates without prior coordination, remains an underexplored challenge in multi-robot collaboration. This paper focuses on adaptive teaming in multi-drone cooperative pursuit, a critical task with real-world applications such as border surveillance, search-and-rescue, and counter-terrorism. We first define and formalize the \textbf{A}daptive Teaming in \textbf{M}ulti-\textbf{D}rone \textbf{P}ursuit (AT-MDP) problem and introduce AT-MDP framework, a comprehensive framework that integrates simulation, algorithm training and real-world deployment. AT-MDP framework provides a flexible experiment configurator and interface for simulation, a distributed training framework with an extensive algorithm zoo (including two newly proposed baseline methods) and an unseen drone zoo for evaluating adaptive teaming, as well as a real-world deployment system that utilizes edge computing and Crazyflie drones. To the best of our knowledge, AT-MDP framework is the first adaptive framework for continuous-action decision-making in complex real-world drone tasks, enabling multiple drones to coordinate effectively with unseen teammates. Extensive experiments in four multi-drone pursuit environments of increasing difficulty confirm the effectiveness of AT-MDP framework, while real-world deployments further validate its feasibility in physical systems. Videos and code are available at https://sites.google.com/view/at-mdp.
- Abstract(参考訳): 適応的なチーム編成は、事前調整なしに目に見えないチームメイトとコラボレーションする能力であり、マルチロボットのコラボレーションにおいて、未調査の課題である。
本稿では, 国境監視, 捜索救助, 対テロリズムなどの現実的応用における重要な課題である, マルチドローン協調追尾における適応的チーム化に焦点を当てた。
まず, シミュレーション, アルゴリズムトレーニング, 実世界展開を統合する包括的なフレームワークであるAT-MDPフレームワークを導入する。
AT-MDPフレームワークは、フレキシブルな実験設定とシミュレーションのためのインターフェース、広範囲なアルゴリズム動物園(新たに提案された2つのベースラインメソッドを含む)を備えた分散トレーニングフレームワーク、適応型チームの評価のための見えないドローン動物園、エッジコンピューティングとクレイジーフリードローンを利用する実世界のデプロイメントシステムを提供する。
われわれの知る限りでは、AT-MDPフレームワークは、複雑な現実世界のドローンタスクにおける継続的な行動決定のための最初の適応フレームワークであり、複数のドローンが、目に見えないチームメイトと効果的に協調することができる。
AT-MDPフレームワークの有効性を実証する一方、現実の展開は物理システムにおけるその実現可能性をさらに検証する。
ビデオとコードはhttps://sites.google.com/view/at-mdp.comで公開されている。
関連論文リスト
- Cluster-Based Multi-Agent Task Scheduling for Space-Air-Ground Integrated Networks [60.085771314013044]
低高度経済は、コミュニケーションやセンシングなどの分野で発展する大きな可能性を秘めている。
本稿では,SAGINにおけるマルチUAV協調タスクスケジューリング問題に対処するため,クラスタリングに基づく多エージェントDeep Deterministic Policy Gradient (CMADDPG)アルゴリズムを提案する。
論文 参考訳(メタデータ) (2024-12-14T06:17:33Z) - Cooperative and Asynchronous Transformer-based Mission Planning for Heterogeneous Teams of Mobile Robots [1.1049608786515839]
エージェント間の分散意思決定を協調するための協調型非同期トランスフォーマーベースミッションプランニング(CATMiP)フレームワークを提案する。
我々は,CATMiPを2次元グリッドワールドシミュレーション環境で評価し,その性能を計画に基づく探索法と比較した。
論文 参考訳(メタデータ) (2024-10-08T21:14:09Z) - SPACE: A Python-based Simulator for Evaluating Decentralized Multi-Robot Task Allocation Algorithms [1.52292571922932]
本研究では,分散マルチロボットタスクアロケーション(MRTA)アルゴリズムの研究,評価,比較を支援するPythonベースのシミュレータであるSPACE(Swarm Planning and Control Evaluation)を提案する。
SPACEは、Pythonプラグインとして意思決定アルゴリズムを実装し、直感的なGUIでエージェントの動作木を簡単に構築し、エージェント間通信とローカルタスク認識のための組み込みサポートを活用することで、コアアルゴリズム開発を効率化する。
論文 参考訳(メタデータ) (2024-09-06T12:38:24Z) - Efficient Adaptation in Mixed-Motive Environments via Hierarchical Opponent Modeling and Planning [51.52387511006586]
本稿では,HOP(Hierarchical Opponent Modeling and Planning)を提案する。
HOPは階層的に2つのモジュールから構成される: 相手の目標を推論し、対応する目標条件のポリシーを学ぶ、反対モデリングモジュール。
HOPは、さまざまな未確認エージェントと相互作用する際、優れた少数ショット適応能力を示し、セルフプレイのシナリオで優れている。
論文 参考訳(メタデータ) (2024-06-12T08:48:06Z) - N-Agent Ad Hoc Teamwork [36.10108537776956]
協調的マルチエージェント行動の学習への現在のアプローチは、比較的限定的な設定を前提としている。
本稿では,この問題を定式化し,エージェントモデリングを用いたポリシー最適化(POAM)アルゴリズムを提案する。
POAMは、NAHT問題に対するポリシーグラデーションであり、マルチエージェント強化学習アプローチであり、多様なチームメイト行動への適応を可能にする。
論文 参考訳(メタデータ) (2024-04-16T17:13:08Z) - Unified Human-Scene Interaction via Prompted Chain-of-Contacts [61.87652569413429]
HSI(Human-Scene Interaction)は、AIや仮想現実といった分野において重要なコンポーネントである。
本稿では,言語コマンドによる多様なインタラクションの統一制御を支援する統一型HSIフレームワークUniHSIを提案する。
論文 参考訳(メタデータ) (2023-09-14T17:59:49Z) - AdverSAR: Adversarial Search and Rescue via Multi-Agent Reinforcement
Learning [4.843554492319537]
本稿では,敵対的エージェント間コミュニケーションの存在下で,ロボットの戦略を効率的に調整するアルゴリズムを提案する。
ロボットは対象の場所について事前の知識を持っておらず、隣接するロボットのサブセットのみといつでも対話できると仮定される。
提案手法の有効性は, グリッドワールド環境のプロトタイプで実証した。
論文 参考訳(メタデータ) (2022-12-20T08:13:29Z) - Collaborative Target Search with a Visual Drone Swarm: An Adaptive
Curriculum Embedded Multistage Reinforcement Learning Approach [0.0]
適応型カリキュラム組込み多段階学習(ACEMSL)という,データ効率の高い深層強化学習(DRL)手法を提案する。
我々は、協調対象探索タスクを、個別の障害物回避、対象探索、エージェント間協調を含むいくつかのサブタスクに分解し、多段階学習でエージェントを段階的に訓練する。
我々は、訓練されたモデルを実際の視覚ドローン群に展開し、微調整なしでCTS操作を行う。
論文 参考訳(メタデータ) (2022-04-26T09:32:22Z) - MALib: A Parallel Framework for Population-based Multi-agent
Reinforcement Learning [61.28547338576706]
人口ベースマルチエージェント強化学習(PB-MARL)は、強化学習(RL)アルゴリズムでネストした一連の手法を指す。
PB-MARLのためのスケーラブルで効率的な計算フレームワークMALibを提案する。
論文 参考訳(メタデータ) (2021-06-05T03:27:08Z) - Dynamic Multi-Robot Task Allocation under Uncertainty and Temporal
Constraints [52.58352707495122]
本稿では,不確実性およびマルチエージェント協調の下での逐次意思決定における重要な計算課題を分離するマルチロボット割当アルゴリズムを提案する。
都市におけるマルチアームコンベヤベルトピック・アンド・プレイスとマルチドローン配送ディスパッチの2つの異なる領域における広範囲なシミュレーション結果について検証を行った。
論文 参考訳(メタデータ) (2020-05-27T01:10:41Z) - Model-based Reinforcement Learning for Decentralized Multiagent
Rendezvous [66.6895109554163]
目標を他のエージェントと整合させる人間の能力の下にあるのは、他人の意図を予測し、自分たちの計画を積極的に更新する能力である。
分散型マルチエージェントレンデブーのためのモデルに基づく強化学習手法である階層型予測計画(HPP)を提案する。
論文 参考訳(メタデータ) (2020-03-15T19:49:20Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。