論文の概要: Cooperative and Asynchronous Transformer-based Mission Planning for Heterogeneous Teams of Mobile Robots
- arxiv url: http://arxiv.org/abs/2410.06372v2
- Date: Tue, 14 Jan 2025 22:43:44 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-01-16 15:50:01.608999
- Title: Cooperative and Asynchronous Transformer-based Mission Planning for Heterogeneous Teams of Mobile Robots
- Title(参考訳): 移動ロボットの不均一チームのための協調的・非同期トランスフォーマーによるミッションプランニング
- Authors: Milad Farjadnasab, Shahin Sirouspour,
- Abstract要約: エージェント間の分散意思決定を協調するための協調型非同期トランスフォーマーベースミッションプランニング(CATMiP)フレームワークを提案する。
我々は,CATMiPを2次元グリッドワールドシミュレーション環境で評価し,その性能を計画に基づく探索法と比較した。
- 参考スコア(独自算出の注目度): 1.1049608786515839
- License:
- Abstract: Cooperative mission planning for heterogeneous teams of mobile robots presents a unique set of challenges, particularly when operating under communication constraints and limited computational resources. To address these challenges, we propose the Cooperative and Asynchronous Transformer-based Mission Planning (CATMiP) framework, which leverages multi-agent reinforcement learning (MARL) to coordinate distributed decision making among agents with diverse sensing, motion, and actuation capabilities, operating under sporadic ad hoc communication. A Class-based Macro-Action Decentralized Partially Observable Markov Decision Process (CMacDec-POMDP) is also formulated to effectively model asynchronous decision-making for heterogeneous teams of agents. The framework utilizes an asynchronous centralized training and distributed execution scheme that is developed based on the Multi-Agent Transformer (MAT) architecture. This design allows a single trained model to generalize to larger environments and accommodate varying team sizes and compositions. We evaluate CATMiP in a 2D grid-world simulation environment and compare its performance against planning-based exploration methods. Results demonstrate CATMiP's superior efficiency, scalability, and robustness to communication dropouts, highlighting its potential for real-world heterogeneous mobile robot systems. The code is available at https://github.com/mylad13/CATMiP.
- Abstract(参考訳): 移動ロボットの異種チームのための協調ミッションプランニングは,特に通信制約や限られた計算資源の下での運用において,ユニークな課題の集合を示す。
これらの課題に対処するために,多エージェント強化学習(MARL)を利用した協調型・非同期トランスフォーマーベースミッションプランニング(CATMiP)フレームワークを提案する。
また、CMacDec-POMDP(C MacDec-POMDP)は、異種エージェントの非同期決定を効果的にモデル化するために、クラスベースのマクロアクション分散部分観測可能マルコフ決定プロセス(CMacDec-POMDP)も構成されている。
このフレームワークは、マルチエージェントトランスフォーマー(MAT)アーキテクチャに基づいて開発された非同期集中型トレーニングと分散実行方式を利用する。
この設計により、単一のトレーニングされたモデルでより大きな環境に一般化し、さまざまなチームサイズと構成を適合させることができる。
我々は,CATMiPを2次元グリッドワールドシミュレーション環境で評価し,その性能を計画に基づく探索法と比較した。
結果は、CATMiPが通信のドロップアウトに対して優れた効率性、スケーラビリティ、堅牢性を示し、現実世界の異種移動ロボットシステムの可能性を強調している。
コードはhttps://github.com/mylad13/CATMiPで入手できる。
関連論文リスト
- Communication Learning in Multi-Agent Systems from Graph Modeling Perspective [62.13508281188895]
本稿では,エージェント間の通信アーキテクチャを学習可能なグラフとして概念化する手法を提案する。
本稿では,各エージェントに対して時間的ゲーティング機構を導入し,ある時間に共有情報を受信するかどうかの動的決定を可能にする。
論文 参考訳(メタデータ) (2024-11-01T05:56:51Z) - Towards Collaborative Intelligence: Propagating Intentions and Reasoning for Multi-Agent Coordination with Large Language Models [41.95288786980204]
現在のエージェントフレームワークは、シングルエージェント実行への依存に悩まされ、モジュール間通信が堅牢でないことが多い。
協調的なMARLにおける協調行動を可能にするための協調エージェントとして,大規模言語モデルを訓練するためのフレームワークを提案する。
伝搬ネットワークは、放送意図をチームメイト固有のコミュニケーションメッセージに変換し、指定されたチームメイトと関連する目標を共有する。
論文 参考訳(メタデータ) (2024-07-17T13:14:00Z) - Internet of Agents: Weaving a Web of Heterogeneous Agents for Collaborative Intelligence [79.5316642687565]
既存のマルチエージェントフレームワークは、多種多様なサードパーティエージェントの統合に苦慮することが多い。
我々はこれらの制限に対処する新しいフレームワークであるInternet of Agents (IoA)を提案する。
IoAはエージェント統合プロトコル、インスタントメッセージのようなアーキテクチャ設計、エージェントのチーム化と会話フロー制御のための動的メカニズムを導入している。
論文 参考訳(メタデータ) (2024-07-09T17:33:24Z) - AgentScope: A Flexible yet Robust Multi-Agent Platform [66.64116117163755]
AgentScopeは、メッセージ交換をコアコミュニケーションメカニズムとする、開発者中心のマルチエージェントプラットフォームである。
豊富な構文ツール、組み込みエージェントとサービス機能、アプリケーションのデモとユーティリティモニタのためのユーザフレンドリなインターフェース、ゼロコードプログラミングワークステーション、自動プロンプトチューニング機構により、開発とデプロイメントの両方の障壁は大幅に低下した。
論文 参考訳(メタデータ) (2024-02-21T04:11:28Z) - Multi-Agent Reinforcement Learning for Pragmatic Communication and
Control [40.11766545693947]
本稿では,目標指向通信とネットワーク制御を組み合わせた統合設計を単一最適化モデルとして提案する。
通信システムと制御システムの合同訓練は、全体的な性能を著しく向上させることができる。
論文 参考訳(メタデータ) (2023-02-28T08:30:24Z) - A Unified Architecture for Dynamic Role Allocation and Collaborative
Task Planning in Mixed Human-Robot Teams [0.0]
任意のサイズの混合ロボットチームにおいて,動的役割割り当てと協調作業計画のための新しいアーキテクチャを提案する。
このアーキテクチャは、動作木(BT)に基づく集中型リアクティブかつモジュール型タスク非依存の計画手法を基盤としている。
MILPコストとして使用されるさまざまなメトリクスにより、アーキテクチャはコラボレーションの様々な側面を好むことができる。
論文 参考訳(メタデータ) (2023-01-19T12:30:56Z) - AdverSAR: Adversarial Search and Rescue via Multi-Agent Reinforcement
Learning [4.843554492319537]
本稿では,敵対的エージェント間コミュニケーションの存在下で,ロボットの戦略を効率的に調整するアルゴリズムを提案する。
ロボットは対象の場所について事前の知識を持っておらず、隣接するロボットのサブセットのみといつでも対話できると仮定される。
提案手法の有効性は, グリッドワールド環境のプロトタイプで実証した。
論文 参考訳(メタデータ) (2022-12-20T08:13:29Z) - ReLMoGen: Leveraging Motion Generation in Reinforcement Learning for
Mobile Manipulation [99.2543521972137]
ReLMoGenは、サブゴールを予測するための学習されたポリシーと、これらのサブゴールに到達するために必要な動作を計画し実行するためのモーションジェネレータを組み合わせたフレームワークである。
本手法は,フォトリアリスティック・シミュレーション環境における7つのロボットタスクの多種多様なセットをベンチマークする。
ReLMoGenは、テスト時に異なるモーションジェネレータ間で顕著な転送可能性を示し、実際のロボットに転送する大きな可能性を示している。
論文 参考訳(メタデータ) (2020-08-18T08:05:15Z) - A Cordial Sync: Going Beyond Marginal Policies for Multi-Agent Embodied
Tasks [111.34055449929487]
エージェントが協力して家具をリビングルームに移動させるという,新しいタスクFurnMoveを紹介した。
既存のタスクとは異なり、FurnMoveはエージェントが各タイミングで調整する必要がある。
既存の分散化されたアクションサンプリング手順は、表現力のある共同アクションポリシーを許さない。
SynC-policiesとCORDIALを用いて、我々のエージェントはFurnMoveで58%の完成率を達成する。
論文 参考訳(メタデータ) (2020-07-09T17:59:57Z) - Learning Structured Communication for Multi-agent Reinforcement Learning [104.64584573546524]
本研究では,マルチエージェント強化学習(MARL)環境下での大規模マルチエージェント通信機構について検討する。
本稿では、より柔軟で効率的な通信トポロジを用いて、LSC(Learning Structured Communication)と呼ばれる新しいフレームワークを提案する。
論文 参考訳(メタデータ) (2020-02-11T07:19:45Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。