Identifying relevant indicators for monitoring a National Artificial Intelligence Strategy
- URL: http://arxiv.org/abs/2502.10412v1
- Date: Thu, 23 Jan 2025 19:59:31 GMT
- Title: Identifying relevant indicators for monitoring a National Artificial Intelligence Strategy
- Authors: Renata Pelissari, Ricardo Suyama, Leonardo Tomazeli Duarte, Henrique Sá Earp,
- Abstract summary: We propose a methodology consisting of two key components.<n>First, it involves identifying relevant indicators within national AI strategies.<n>Second, it assesses the alignment between these indicators and the strategic actions of a specific government's AI strategy.
- Score: 7.937206070844554
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: How can a National Artificial Intelligence Strategy be effectively monitored? To address this question, we propose a methodology consisting of two key components. First, it involves identifying relevant indicators within national AI strategies. Second, it assesses the alignment between these indicators and the strategic actions of a specific government's AI strategy, allowing for a critical evaluation of its monitoring measures. Moreover, identifying these indicators helps assess the overall quality of the strategy's structure. A lack of alignment between strategic actions and the identified indicators may reveal gaps or blind spots in the strategy. This methodology is demonstrated using the Brazilian AI strategy as a case study.
Related papers
- Strategic Alignment Patterns in National AI Policies [0.0]
This paper introduces a novel visual mapping methodology for assessing strategic alignment in national artificial intelligence policies.<n>We analyze 15-20 national AI strategies using a combination of matrix-based visualization and network analysis to identify patterns of alignment and misalignment.
arXiv Detail & Related papers (2025-07-07T18:36:30Z) - Anticipating Gaming to Incentivize Improvement: Guiding Agents in (Fair) Strategic Classification [6.660458629649826]
We explore individuals' choice between genuinely improving their qualifications ('improvement'') vs. attempting to deceive the algorithm.<n>We formulate these interactions as a Stackelberg game, where a firm deploys a (fair) classifier, and individuals strategically respond.
arXiv Detail & Related papers (2025-05-08T18:47:23Z) - Generative Auto-Bidding with Value-Guided Explorations [47.71346722705783]
This paper introduces a novel offline Generative Auto-bidding framework with Value-Guided Explorations (GAVE)
Experimental results on two offline datasets and real-world deployments demonstrate that GAVE outperforms state-of-the-art baselines in both offline evaluations and online A/B tests.
arXiv Detail & Related papers (2025-04-20T12:28:49Z) - EPO: Explicit Policy Optimization for Strategic Reasoning in LLMs via Reinforcement Learning [69.55982246413046]
We propose explicit policy optimization (EPO) for strategic reasoning.<n>EPO provides strategies in open-ended action space and can be plugged into arbitrary LLM agents to motivate goal-directed behavior.<n> Experiments across social and physical domains demonstrate EPO's ability of long-term goal alignment.
arXiv Detail & Related papers (2025-02-18T03:15:55Z) - Imagining and building wise machines: The centrality of AI metacognition [78.76893632793497]
We examine what is known about human wisdom and sketch a vision of its AI counterpart.<n>We argue that AI systems particularly struggle with metacognition.<n>We discuss how wise AI might be benchmarked, trained, and implemented.
arXiv Detail & Related papers (2024-11-04T18:10:10Z) - Learning Strategy Representation for Imitation Learning in Multi-Agent Games [15.209555810145549]
We introduce the Strategy Representation for Learning (STRIL) framework, which effectively learns strategy representations in multi-agent games.<n>STRIL is a plug-in method that can be integrated into existing IL algorithms.<n>We demonstrate the effectiveness of STRIL across competitive multi-agent scenarios, including Two-player Pong, Limit Texas Hold'em, and Connect Four.
arXiv Detail & Related papers (2024-09-28T14:30:17Z) - Artificial Intelligence and Strategic Decision-Making: Evidence from Entrepreneurs and Investors [1.1060425537315088]
This paper explores how artificial intelligence (AI) may impact the strategic decision-making (SDM) process in firms.
We illustrate how AI could augment existing SDM tools and provide empirical evidence from a leading accelerator program and a startup competition.
We examine implications for key cognitive processes underlying SDM -- search, representation, and aggregation.
arXiv Detail & Related papers (2024-08-16T15:46:15Z) - LLM as a Mastermind: A Survey of Strategic Reasoning with Large Language Models [75.89014602596673]
Strategic reasoning requires understanding and predicting adversary actions in multi-agent settings while adjusting strategies accordingly.
We explore the scopes, applications, methodologies, and evaluation metrics related to strategic reasoning with Large Language Models.
It underscores the importance of strategic reasoning as a critical cognitive capability and offers insights into future research directions and potential improvements.
arXiv Detail & Related papers (2024-04-01T16:50:54Z) - Levels of AGI for Operationalizing Progress on the Path to AGI [64.59151650272477]
We propose a framework for classifying the capabilities and behavior of Artificial General Intelligence (AGI) models and their precursors.
This framework introduces levels of AGI performance, generality, and autonomy, providing a common language to compare models, assess risks, and measure progress along the path to AGI.
arXiv Detail & Related papers (2023-11-04T17:44:58Z) - Risk-reducing design and operations toolkit: 90 strategies for managing
risk and uncertainty in decision problems [65.268245109828]
This paper develops a catalog of such strategies and develops a framework for them.
It argues that they provide an efficient response to decision problems that are seemingly intractable due to high uncertainty.
It then proposes a framework to incorporate them into decision theory using multi-objective optimization.
arXiv Detail & Related papers (2023-09-06T16:14:32Z) - Strategy Extraction in Single-Agent Games [0.19336815376402716]
We propose an approach to knowledge transfer using behavioural strategies as a form of transferable knowledge influenced by the human cognitive ability to develop strategies.
We show that our method can identify plausible strategies in three environments: Pacman, Bank Heist and a dungeon-crawling video game.
arXiv Detail & Related papers (2023-05-22T01:28:59Z) - Qualitative Differences Between Evolutionary Strategies and
Reinforcement Learning Methods for Control of Autonomous Agents [0.0]
We focus on two popular state-of-the-art algorithms: the OpenAI-ES evolutionary strategy and the Proximal Policy Optimization (PPO) reinforcement learning algorithm.
We analyze how the methods differ with respect to: (i) general efficacy, (ii) ability to cope with sparse rewards, (iii) propensity/capacity to discover minimal solutions, (iv) dependency on reward shaping, and (v) ability to cope with variations of the environmental conditions.
arXiv Detail & Related papers (2022-05-16T11:51:36Z) - Insights into Data through Model Behaviour: An Explainability-driven
Strategy for Data Auditing for Responsible Computer Vision Applications [70.92379567261304]
This study explores an explainability-driven strategy to data auditing.
We demonstrate this strategy by auditing two popular medical benchmark datasets.
We discover hidden data quality issues that lead deep learning models to make predictions for the wrong reasons.
arXiv Detail & Related papers (2021-06-16T23:46:39Z) - Catch Me if I Can: Detecting Strategic Behaviour in Peer Assessment [61.24399136715106]
We consider the issue of strategic behaviour in various peer-assessment tasks, including peer grading of exams or homeworks and peer review in hiring or promotions.
Our focus is on designing methods for detection of such manipulations.
Specifically, we consider a setting in which agents evaluate a subset of their peers and output rankings that are later aggregated to form a final ordering.
arXiv Detail & Related papers (2020-10-08T15:08:40Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.