論文の概要: A Survey on Vulnerability Prioritization: Taxonomy, Metrics, and Research Challenges
- arxiv url: http://arxiv.org/abs/2502.11070v1
- Date: Sun, 16 Feb 2025 10:33:37 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-02-18 20:34:44.824311
- Title: A Survey on Vulnerability Prioritization: Taxonomy, Metrics, and Research Challenges
- Title(参考訳): 脆弱性優先化に関する調査研究--分類学・メトリクス・研究課題
- Authors: Yuning Jiang, Nay Oo, Qiaoran Meng, Hoon Wei Lim, Biplab Sikdar,
- Abstract要約: リソース制約は効果的な脆弱性優先順位付け戦略を必要とする。
本稿では,メトリクスを重大度,悪用性,文脈要因,予測指標,集約手法に分類する新しい分類法を提案する。
- 参考スコア(独自算出の注目度): 20.407534993667607
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In the highly interconnected digital landscape of today, safeguarding complex infrastructures against cyber threats has become increasingly challenging due to the exponential growth in the number and complexity of vulnerabilities. Resource constraints necessitate effective vulnerability prioritization strategies, focusing efforts on the most critical risks. This paper presents a systematic literature review of 82 studies, introducing a novel taxonomy that categorizes metrics into severity, exploitability, contextual factors, predictive indicators, and aggregation methods. Our analysis reveals significant gaps in existing approaches and challenges with multi-domain applicability. By emphasizing the need for dynamic, context-aware metrics and scalable solutions, we provide actionable insights to bridge the gap between research and real-world applications. This work contributes to the field by offering a comprehensive framework for evaluating vulnerability prioritization methodologies and setting a research agenda to advance the state of practice.
- Abstract(参考訳): 今日の高度に相互接続されたデジタルの世界では、脆弱性の数と複雑さの指数関数的な増加により、複雑なインフラをサイバー脅威から守ることがますます困難になっている。
リソース制約は効果的な脆弱性優先順位付け戦略を必要とし、最も重大なリスクに努力する。
本稿では,82研究の体系的な文献レビューを行い,メトリクスを重大度,悪用性,文脈要因,予測指標,集約方法に分類する新しい分類法を紹介した。
分析の結果,既存のアプローチとマルチドメイン適用性に関する課題に,大きなギャップがあることが判明した。
動的でコンテキスト対応のメトリクスとスケーラブルなソリューションの必要性を強調することで、研究と現実世界のアプリケーション間のギャップを埋めるための実用的な洞察を提供する。
この研究は、脆弱性優先順位付け手法を評価するための包括的なフレームワークを提供し、実践状況を進めるための研究アジェンダを設定することで、この分野に貢献する。
関連論文リスト
- Why Reasoning Matters? A Survey of Advancements in Multimodal Reasoning (v1) [66.51642638034822]
推論は人間の知性の中心であり、多様なタスクにまたがる構造化された問題解決を可能にする。
大規模言語モデル(LLM)の最近の進歩は、算術、常識、記号領域における推論能力を大幅に向上させてきた。
本稿では,テキストおよびマルチモーダルLLMにおける推論手法の簡潔かつ洞察に富んだ概要について述べる。
論文 参考訳(メタデータ) (2025-04-04T04:04:56Z) - A Survey of Efficient Reasoning for Large Reasoning Models: Language, Multimodality, and Beyond [88.5807076505261]
大規模推論モデル (LRM) は, 推論中におけるチェーン・オブ・ソート (CoT) の推論長を拡大することにより, 高い性能向上を示した。
懸念が高まっているのは、過度に長い推論の痕跡を生み出す傾向にある。
この非効率性は、トレーニング、推論、現実のデプロイメントに重大な課題をもたらす。
論文 参考訳(メタデータ) (2025-03-27T15:36:30Z) - A Survey on Post-training of Large Language Models [185.51013463503946]
大規模言語モデル(LLM)は、自然言語処理を根本的に変革し、会話システムから科学的探索まで、さまざまな領域で欠かせないものにしている。
これらの課題は、制限された推論能力、倫理的不確実性、最適なドメイン固有のパフォーマンスといった欠点に対処するために、先進的な訓練後言語モデル(PoLM)を必要とする。
本稿では,5つのコアパラダイムにまたがるPoLMの進化を体系的に追跡する,最初の包括的調査について述べる。
論文 参考訳(メタデータ) (2025-03-08T05:41:42Z) - Deep Learning Aided Software Vulnerability Detection: A Survey [3.4396557936415686]
ソフトウェア脆弱性の広範囲性は、サイバー攻撃の急増の要因として浮上している。
ディープラーニング(DL)メソッドは,コードの複雑なパターンを自動的に学習し,識別する上で優れています。
この調査は、2017年から2024年の間に、ハイインパクトな雑誌やカンファレンスから34の関連研究を分析した。
論文 参考訳(メタデータ) (2025-03-06T01:35:16Z) - VulRG: Multi-Level Explainable Vulnerability Patch Ranking for Complex Systems Using Graphs [20.407534993667607]
この作業では、脆弱性パッチの優先順位付けのためのグラフベースのフレームワークを導入している。
多様なデータソースとメトリクスを普遍的に適用可能なモデルに統合する。
洗練されたリスクメトリクスは、コンポーネント、アセット、システムレベルの詳細な評価を可能にします。
論文 参考訳(メタデータ) (2025-02-16T14:21:52Z) - LLMs in Software Security: A Survey of Vulnerability Detection Techniques and Insights [12.424610893030353]
大規模言語モデル(LLM)は、ソフトウェア脆弱性検出のためのトランスフォーメーションツールとして登場している。
本稿では,脆弱性検出におけるLSMの詳細な調査を行う。
言語間の脆弱性検出、マルチモーダルデータ統合、リポジトリレベルの分析といった課題に対処する。
論文 参考訳(メタデータ) (2025-02-10T21:33:38Z) - SoK: Towards Effective Automated Vulnerability Repair [11.028015952491991]
ソフトウェア脆弱性の増加は、自動脆弱性修復(AVR)技術を必要とする。
この知識の体系化(SoK)は、合成と現実の両方の脆弱性を含む、ランドスケープの包括的概要を提供する。
論文 参考訳(メタデータ) (2025-01-31T00:35:55Z) - LLM as a Mastermind: A Survey of Strategic Reasoning with Large Language Models [75.89014602596673]
戦略推論は、戦略を調整しながら、マルチエージェント設定における敵の行動を理解し、予測する必要がある。
大規模言語モデルを用いた戦略的推論に関連するスコープ,アプリケーション,方法論,評価指標について検討する。
戦略的推論を重要な認知能力として重要視し、将来の研究の方向性や潜在的な改善に関する洞察を提供する。
論文 参考訳(メタデータ) (2024-04-01T16:50:54Z) - Object Detectors in the Open Environment: Challenges, Solutions, and Outlook [95.3317059617271]
オープン環境のダイナミックで複雑な性質は、オブジェクト検出器に新しくて恐ろしい挑戦をもたらす。
本稿では,オープン環境におけるオブジェクト検出器の総合的なレビューと解析を行う。
データ/ターゲットの変化の次元に基づいて、4つの四分法(ドメイン外、カテゴリ外、堅牢な学習、漸進的な学習)を含むフレームワークを提案する。
論文 参考訳(メタデータ) (2024-03-24T19:32:39Z) - Dynamic Vulnerability Criticality Calculator for Industrial Control Systems [0.0]
本稿では,動的脆弱性臨界計算機を提案する革新的な手法を提案する。
本手法は, 環境トポロジの分析と, 展開されたセキュリティ機構の有効性を包含する。
本手法では,これらの要因を総合的なファジィ認知マップモデルに統合し,攻撃経路を組み込んで全体の脆弱性スコアを総合的に評価する。
論文 参考訳(メタデータ) (2024-03-20T09:48:47Z) - AI in Supply Chain Risk Assessment: A Systematic Literature Review and Bibliometric Analysis [0.0]
本研究では,Google Scholar and Web of Scienceの1,903項目をPRISMAガイドラインで選択した54項目について検討した。
その結果,ランダムフォレスト,XGBoost,ハイブリッドアプローチなどのMLモデルは,パンデミック後の文脈におけるリスク予測精度と適応性を大幅に向上させることがわかった。
この研究は、データ品質や解釈可能性といった課題に対処するために、動的な戦略、学際的なコラボレーション、継続的なモデル評価の必要性を強調している。
論文 参考訳(メタデータ) (2023-12-12T17:47:51Z) - Predicting Themes within Complex Unstructured Texts: A Case Study on
Safeguarding Reports [66.39150945184683]
本稿では,教師付き分類手法を用いた保護レポートにおいて,主テーマの自動識別の問題に焦点をあてる。
この結果から,ラベル付きデータに制限のある複雑なタスクであっても,深層学習モデルが対象知識の振る舞いをシミュレートする可能性が示唆された。
論文 参考訳(メタデータ) (2020-10-27T19:48:23Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。