論文の概要: SURGE: On the Potential of Large Language Models as General-Purpose Surrogate Code Executors
- arxiv url: http://arxiv.org/abs/2502.11167v2
- Date: Mon, 03 Mar 2025 08:26:12 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-03-04 16:11:58.279069
- Title: SURGE: On the Potential of Large Language Models as General-Purpose Surrogate Code Executors
- Title(参考訳): SURGE:汎用サロゲートコード実行子としての大規模言語モデルの可能性について
- Authors: Bohan Lyu, Siqiao Huang, Zichen Liang,
- Abstract要約: 大規模言語モデル(LLM)は、コードに関連するタスクにおいて顕著な機能を示した。
LLMが多様なプログラムを理解し処理する能力を考えると、汎用的なサロゲートモデルを構築する上で有望な方向性を示す。
SURGEは、1160ドル(約1万1000円)の価格問題で、8ドル(約8万3000円)の鍵となる側面をカバーしたベンチマークです。
オープンソースおよびプロプライエタリ LLM の実証分析を通じて,スケーリング法則,データ効率,予測精度を検討した。
- 参考スコア(独自算出の注目度): 0.0
- License:
- Abstract: Neural surrogate models have emerged as powerful and efficient tools in data mining. Meanwhile, large language models (LLMs) have demonstrated remarkable capabilities in code-related tasks. We investigate a novel application: using LLMs as surrogate models for code execution prediction. Given LLMs' unique ability to understand and process diverse programs, they present a promising direction for building general-purpose surrogate models. To systematically investigate this capability, we introduce SURGE, a comprehensive benchmark with $1160$ problems covering $8$ key aspects: multi-language programming tasks, competition-level programming problems, repository-level code analysis, high-cost scientific computing, time-complexity-intensive algorithms, buggy code analysis, programs dependent on specific compilers or execution environments, and formal mathematical proof verification. Through extensive empirical analysis of $21$ open-source and proprietary LLMs, we examine scaling laws, data efficiency, and predictive accuracy. Our findings reveal important insights about the feasibility of LLMs as efficient surrogates for computational processes, with implications for automated software testing, program analysis, and computational resource optimization in data mining applications. Code and dataset are released at https://github.com/Imbernoulli/SURGE.
- Abstract(参考訳): ニューラルサロゲートモデルは、データマイニングにおいて強力で効率的なツールとして登場した。
一方、大規模言語モデル(LLM)は、コード関連のタスクにおいて顕著な機能を示した。
コード実行予測のためのサロゲートモデルとしてLLMを使用する新しいアプリケーションについて検討する。
LLMの多様なプログラムを理解し処理するユニークな能力を考えると、汎用的なサロゲートモデルを構築する上で有望な方向性を示す。
マルチ言語プログラミングタスク、競合レベルプログラミング問題、リポジトリレベルのコード解析、高コストな科学計算、時間複雑度集約アルゴリズム、バグの多いコード解析、特定のコンパイラや実行環境に依存したプログラム、公式な数学的証明などである。
オープンソースおよびプロプライエタリ LLM の広範な実証分析を通じて,スケーリング法則,データ効率,予測精度について検討する。
本研究は, 自動ソフトウェアテスト, プログラム解析, データマイニングアプリケーションにおける計算資源最適化など, 計算プロセスの効率的なサロゲートとしてのLCMの実現可能性に関する重要な知見を明らかにするものである。
コードとデータセットはhttps://github.com/Imbernoulli/SURGE.comで公開されている。
関連論文リスト
- A Tool for In-depth Analysis of Code Execution Reasoning of Large Language Models [1.644043499620662]
本稿では,コード実行推論フレームワークの結果を分析する一連のツールであるExeRScopeを紹介する。
分析は、より多くのベンチマークを設計することなく、同様の特性を持つコードに一般化することができる。
論文 参考訳(メタデータ) (2025-01-30T16:56:08Z) - Pseudocode-Injection Magic: Enabling LLMs to Tackle Graph Computational Tasks [15.69049038121735]
グラフ計算タスクは本質的に困難であり、しばしば効率的な解に対する高度なアルゴリズムを要求する。
既存のアプローチは、複雑なグラフ構造を理解するための大きな言語モデルの制限された能力によって制約される。
問題理解,迅速な設計,コード生成という3つの重要なステップから構成される新しいフレームワークであるPIEを紹介する。
論文 参考訳(メタデータ) (2025-01-23T15:04:22Z) - OpenCoder: The Open Cookbook for Top-Tier Code Large Language Models [70.72097493954067]
コードのための大規模言語モデル(LLM)は、コード生成、推論タスク、エージェントシステムなど、さまざまな領域で必須になっている。
オープンアクセスのコード LLM はプロプライエタリなモデルの性能レベルに近づきつつあるが、高品質なコード LLM は依然として限られている。
トップクラスのコードLLMであるOpenCoderは、主要なモデルに匹敵するパフォーマンスを達成するだけでなく、研究コミュニティの"オープンクックブック"としても機能します。
論文 参考訳(メタデータ) (2024-11-07T17:47:25Z) - Codellm-Devkit: A Framework for Contextualizing Code LLMs with Program Analysis Insights [9.414198519543564]
codellm-devkit (以下, CLDK') は,プログラム解析のプロセスを大幅に単純化したオープンソースライブラリである。
CLDKは開発者に対して直感的でユーザフレンドリなインターフェースを提供しています。
論文 参考訳(メタデータ) (2024-10-16T20:05:59Z) - Studying and Benchmarking Large Language Models For Log Level Suggestion [49.176736212364496]
大規模言語モデル(LLM)は、様々な領域で研究の焦点となっている。
本稿では,12個のオープンソースLCMのログレベル提案における性能に及ぼす特性と学習パラダイムの影響について検討する。
論文 参考訳(メタデータ) (2024-10-11T03:52:17Z) - Case2Code: Scalable Synthetic Data for Code Generation [105.89741089673575]
大規模言語モデル(LLM)は、コード生成において顕著なブレークスルーを示している。
最近の研究は、いくつかの強力なLLMによって生成された合成データをトレーニングすることで、コードLLMを改善している。
プログラムの表現性と正確性を利用したtextbfCase2Code タスクを提案する。
論文 参考訳(メタデータ) (2024-07-17T11:35:00Z) - What's Wrong with Your Code Generated by Large Language Models? An Extensive Study [80.18342600996601]
大規模言語モデル(LLM)は、標準解に比べて短いがより複雑なコードを生成する。
3つのカテゴリと12のサブカテゴリを含む誤ったコードに対するバグの分類を開発し、一般的なバグタイプに対する根本原因を分析する。
そこで本研究では,LLMがバグタイプやコンパイラフィードバックに基づいて生成したコードを批判し,修正することのできる,自己批判を導入した新たな学習自由反復手法を提案する。
論文 参考訳(メタデータ) (2024-07-08T17:27:17Z) - Perplexed: Understanding When Large Language Models are Confused [3.4208414448496027]
本稿では,言語モデルが複雑になる場所を探索するライブラリであるperplexedを紹介する。
Codetokenizerと呼ばれるコードモデルの解析を支援するために構築した追加ツールを使用して、コード生成のためのLLM(Large Language Models)に焦点を当てたケーススタディを実施しました。
我々の研究したコードLLMは、コードが構文的に正しくないコーディング構造において、最悪のパフォーマンスを示しました。
論文 参考訳(メタデータ) (2024-04-09T22:03:39Z) - If LLM Is the Wizard, Then Code Is the Wand: A Survey on How Code
Empowers Large Language Models to Serve as Intelligent Agents [81.60906807941188]
大型言語モデル(LLM)は、自然言語と形式言語(コード)の組み合わせに基づいて訓練される
コードは、標準構文、論理一貫性、抽象化、モジュール性を備えた高レベルの目標を実行可能なステップに変換する。
論文 参考訳(メタデータ) (2024-01-01T16:51:20Z) - Benchmarking and Explaining Large Language Model-based Code Generation:
A Causality-Centric Approach [12.214585409361126]
大規模言語モデル(LLM)ベースのコード生成は複雑で強力なブラックボックスモデルである。
本稿では,プロンプトと生成されたコードの因果グラフに基づく新しい表現を提案する。
我々は,12以上の迅速な調整戦略で3つの人気のあるLCMを研究することで,我々のフレームワークが提供できる洞察について説明する。
論文 参考訳(メタデータ) (2023-10-10T14:56:26Z) - LEVER: Learning to Verify Language-to-Code Generation with Execution [64.36459105535]
本稿では,プログラムの実行結果の検証を学習することで,言語からコードへの生成を改善するシンプルな手法であるLEVERを提案する。
具体的には、LLMからサンプリングされたプログラムが、自然言語入力、プログラム自体とその実行結果に基づいて正しいか否かを判定するために、検証者を訓練する。
LEVER はベースコード LLMs (4.6% から 10.9% まで) を継続的に改善し、それらすべてに対して新しい最先端の結果を得る。
論文 参考訳(メタデータ) (2023-02-16T18:23:22Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。