論文の概要: Towards identifying possible fault-tolerant advantage of quantum linear system algorithms in terms of space, time and energy
- arxiv url: http://arxiv.org/abs/2502.11239v2
- Date: Tue, 18 Feb 2025 03:35:48 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-02-19 14:09:08.894109
- Title: Towards identifying possible fault-tolerant advantage of quantum linear system algorithms in terms of space, time and energy
- Title(参考訳): 空間・時間・エネルギーの観点からの量子線形系アルゴリズムのフォールトトレラントな利点の同定に向けて
- Authors: Yue Tu, Mark Dubynskyi, Mohammadhossein Mohammadisiahroudi, Ekaterina Riashchentceva, Jinglei Cheng, Dmitry Ryashchentsev, Tamás Terlaky, Junyu Liu,
- Abstract要約: 耐故障性超伝導デバイスにおける空間,時間,エネルギー資源の詳細な評価を行う。
我々の研究は、フォールトトレラントな量子コンピュータが現実世界にまつわる問題に対して、可能で重要な利益を達成するためにどれだけ進歩すべきかを定量的に決定する。
- 参考スコア(独自算出の注目度): 4.809611965725093
- License:
- Abstract: Quantum computing, a prominent non-Von Neumann paradigm beyond Moore's law, can offer superpolynomial speedups for certain problems. Yet its advantages in efficiency for tasks like machine learning remain under investigation, and quantum noise complicates resource estimations and classical comparisons. We provide a detailed estimation of space, time, and energy resources for fault-tolerant superconducting devices running the Harrow-Hassidim-Lloyd (HHL) algorithm, a quantum linear system solver relevant to linear algebra and machine learning. Excluding memory and data transfer, possible quantum advantages over the classical conjugate gradient method could emerge at $N \approx 2^{33} \sim 2^{48}$ or even lower, requiring ${O}(10^5)$ physical qubits, ${O}(10^{12}\sim10^{13})$ Joules, and ${O}(10^6)$ seconds under surface code fault-tolerance with three types of magic state distillation (15-1, 116-12, 225-1). Key parameters include condition number, sparsity, and precision $\kappa, s\approx{O}(10\sim100)$, $\epsilon\sim0.01$, and physical error $10^{-5}$. Our resource estimator adjusts $N, \kappa, s, \epsilon$, providing a map of quantum-classical boundaries and revealing where a practical quantum advantage may arise. Our work quantitatively determine how advanced a fault-tolerant quantum computer should be to achieve possible, significant benefits on problems related to real-world.
- Abstract(参考訳): 量子コンピューティング(Quantum computing)は、ムーアの法則を超える著名な非フォン・ノイマンパラダイムであり、ある種の問題に対して超多項式的なスピードアップを提供することができる。
しかし、機械学習のようなタスクの効率性の利点は研究中であり、量子ノイズはリソース推定と古典的な比較を複雑にしている。
本稿では,Harrow-Hassidim-Lloyd (HHL) アルゴリズム,線形代数および機械学習に関連する量子線形システムソルバを動作させる耐故障性超伝導デバイスに対して,空間,時間,エネルギー資源を詳細に推定する。
メモリとデータ転送を除くと、古典的共役勾配法に対する量子的優位性は、$N \approx 2^{33} \sim 2^{48}$より低く、${O}(10^5)$ physical qubits, ${O}(10^{12}\sim10^{13})$ Joules, ${O}(10^6)$ seconds under surface code fault-tolerance with three type of magic state distillation (15-1, 16-12, 225-1)である。
主なパラメータには、条件番号、スパーシリティ、精度$\kappa、s\approx{O}(10\sim100)$、$\epsilon\sim0.01$、物理的エラー10^{-5}$がある。
我々の資源推定器は$N, \kappa, s, \epsilon$を調整し、量子古典的境界のマップを提供し、実用的な量子優位性が生じる可能性を明らかにする。
我々の研究は、フォールトトレラントな量子コンピュータが現実世界にまつわる問題に対して、可能で重要な利益を達成するためにどれだけ進歩すべきかを定量的に決定する。
関連論文リスト
- Optimizing Multi-level Magic State Factories for Fault-Tolerant Quantum Architectures [0.8642846017977626]
専用ゾーンをマルチレベルマジックステートファクトリと,効率的な論理演算のためのコアプロセッサとして考える。
提案したアーキテクチャでは、量子メモリを持つ量子コンピュータ上で実行される場合、T$--1015$の量子アルゴリズムに105$--108$の物理量子ビットと102$--104$の論理量子ビット数を必要とする。
論文 参考訳(メタデータ) (2024-11-06T21:25:34Z) - On the practicality of quantum sieving algorithms for the shortest vector problem [42.70026220176376]
格子ベースの暗号は、量子後暗号の主要な候補の1つである。
量子攻撃に対する暗号セキュリティは、最短ベクトル問題(SVP)のような格子問題に基づいている
SVPを解くための漸近的な量子スピードアップはGroverの探索に依存している。
論文 参考訳(メタデータ) (2024-10-17T16:54:41Z) - Towards large-scale quantum optimization solvers with few qubits [59.63282173947468]
我々は、$m=mathcalO(nk)$バイナリ変数を$n$ qubitsだけを使って最適化するために、$k>1$で可変量子ソルバを導入する。
我々は,特定の量子ビット効率の符号化が,バレン高原の超ポリノミウム緩和を内蔵特徴としてもたらすことを解析的に証明した。
論文 参考訳(メタデータ) (2024-01-17T18:59:38Z) - Single-Layer Digitized-Counterdiabatic Quantum Optimization for $p$-spin
Models [8.463477025989542]
我々は、デジタルカウンタダイバティック量子最適化(DCQO)アルゴリズムを利用して、4つの局所相互作用までの$p$-spinモデルの最適解を求める。
変分法を用いてパラメータを最適化することにより,それぞれ100ドル,93%,83%のインスタンスに対して,単位精度2-スピン,3-スピン,4-スピンの問題を解く。
論文 参考訳(メタデータ) (2023-11-11T22:49:16Z) - Fast Flux-Activated Leakage Reduction for Superconducting Quantum
Circuits [84.60542868688235]
量子ビット実装のマルチレベル構造から生じる計算部分空間から漏れること。
パラメトリックフラックス変調を用いた超伝導量子ビットの資源効率向上のためのユニバーサルリーク低減ユニットを提案する。
繰り返し重み付け安定化器測定におけるリーク低減ユニットの使用により,検出されたエラーの総数を,スケーラブルな方法で削減できることを実証した。
論文 参考訳(メタデータ) (2023-09-13T16:21:32Z) - Fundamental causal bounds of quantum random access memories [13.19534468575575]
因果性に基づく高速量子メモリの本質的境界について検討する。
QRAMは1次元で$mathcalO(107)$論理量子ビット、様々な2次元アーキテクチャで$mathcalO(1015)$から$mathcalO(1020)$、そして3次元で$mathcalO(1024)$に対応可能であることを示す。
論文 参考訳(メタデータ) (2023-07-25T12:40:48Z) - A single $T$-gate makes distribution learning hard [56.045224655472865]
この研究は、局所量子回路の出力分布の学習可能性に関する広範な評価を提供する。
ハイブリッド量子古典アルゴリズムを含む多種多様な学習アルゴリズムにおいて、深度$d=omega(log(n))$ Clifford回路に関連する生成的モデリング問題さえも困難であることを示す。
論文 参考訳(メタデータ) (2022-07-07T08:04:15Z) - Unimon qubit [42.83899285555746]
超伝導量子ビットは、量子コンピュータを実装する最も有望な候補の1つである。
本稿では,高非線形性,dc電荷雑音に対する完全な感度,フラックス雑音に対する感度,共振器内の1つのジョセフソン接合のみからなる単純な構造を結合した超伝導量子ビット型ユニモンについて紹介し,実演する。
論文 参考訳(メタデータ) (2022-03-11T12:57:43Z) - Quantum State Preparation with Optimal Circuit Depth: Implementations
and Applications [10.436969366019015]
我々は、$Theta(n)$-depth回路は、$O(ndlog d)$ acillary qubitsを持つ$Theta(log(nd))で作成可能であることを示す。
我々は、ハミルトンシミュレーション、方程式の線形系解法、量子ランダムアクセスメモリの実現など、異なる量子コンピューティングタスクにおける結果の適用について論じる。
論文 参考訳(メタデータ) (2022-01-27T13:16:30Z) - Quantum Gram-Schmidt Processes and Their Application to Efficient State
Read-out for Quantum Algorithms [87.04438831673063]
本稿では、生成した状態の古典的ベクトル形式を生成する効率的な読み出しプロトコルを提案する。
我々のプロトコルは、出力状態が入力行列の行空間にある場合に適合する。
我々の技術ツールの1つは、Gram-Schmidt正則手順を実行するための効率的な量子アルゴリズムである。
論文 参考訳(メタデータ) (2020-04-14T11:05:26Z) - What limits the simulation of quantum computers? [5.22339562024796]
実際の量子コンピュータは、完全量子コンピュータに必要なわずかなコストでシミュレートできることを実証する。
我々のアルゴリズムは、行列積状態(MPS)を用いて量子波動関数の表現を圧縮し、低から中程度の絡み合いの状態を非常に正確に捉える。
N=54$ qubits の2次元配列と Control-Z ゲートを持つ回路では、最先端のデバイスよりも数時間でエラー率を得ることができる。
論文 参考訳(メタデータ) (2020-02-18T17:00:39Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。