論文の概要: Neural Operators for Stochastic Modeling of Nonlinear Structural System Response to Natural Hazards
- arxiv url: http://arxiv.org/abs/2502.11279v1
- Date: Sun, 16 Feb 2025 21:41:36 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-02-18 14:09:50.795522
- Title: Neural Operators for Stochastic Modeling of Nonlinear Structural System Response to Natural Hazards
- Title(参考訳): 自然災害に対する非線形構造系応答の確率的モデリングのためのニューラル演算子
- Authors: Somdatta Goswami, Dimitris G. Giovanis, Bowei Li, Seymour M. J. Spence, Michael D. Shields,
- Abstract要約: 我々は、地震や風などの自然災害にさらされる構造系の非線形時間履歴応答の予測に、DeepONet(DeepONet)とFunier Neural operator(FNO)の2つの最先端のニューラル演算子を用いている。
どちらの場合も、訓練されたメタモデルは、対応する高忠実度モデルよりも桁違いに高速でありながら高い精度を達成する。
- 参考スコア(独自算出の注目度): 0.7054043067437596
- License:
- Abstract: Traditionally, neural networks have been employed to learn the mapping between finite-dimensional Euclidean spaces. However, recent research has opened up new horizons, focusing on the utilization of deep neural networks to learn operators capable of mapping infinite-dimensional function spaces. In this work, we employ two state-of-the-art neural operators, the deep operator network (DeepONet) and the Fourier neural operator (FNO) for the prediction of the nonlinear time history response of structural systems exposed to natural hazards, such as earthquakes and wind. Specifically, we propose two architectures, a self-adaptive FNO and a Fast Fourier Transform-based DeepONet (DeepFNOnet), where we employ a FNO beyond the DeepONet to learn the discrepancy between the ground truth and the solution predicted by the DeepONet. To demonstrate the efficiency and applicability of the architectures, two problems are considered. In the first, we use the proposed model to predict the seismic nonlinear dynamic response of a six-story shear building subject to stochastic ground motions. In the second problem, we employ the operators to predict the wind-induced nonlinear dynamic response of a high-rise building while explicitly accounting for the stochastic nature of the wind excitation. In both cases, the trained metamodels achieve high accuracy while being orders of magnitude faster than their corresponding high-fidelity models.
- Abstract(参考訳): 伝統的に、ニューラルネットワークは有限次元ユークリッド空間間のマッピングを学ぶために使われてきた。
しかし、近年の研究では、無限次元関数空間をマッピングできる演算子を学ぶためのディープニューラルネットワークの利用に焦点を当て、新たな地平線が開かれた。
本研究では、地震や風などの自然災害にさらされる構造系の非線形時間履歴応答の予測に、DeepONet(DeepONet)とFunier Neural operator(FNO)の2つの最先端のニューラル演算子を用いる。
具体的には,自己適応型FNOとFast Fourier Transform-based DeepONet(DeepFNOnet)という2つのアーキテクチャを提案する。
アーキテクチャの効率性と適用性を示すために,2つの問題を考察する。
まず, 提案モデルを用いて, 確率的地盤運動を受ける6階建てせん断建築物の地震動動的応答を予測した。
第2の課題は,高層建築物の風による非線形応答を予測し,風速の確率的性質を明示的に考慮することである。
どちらの場合も、訓練されたメタモデルは、対応する高忠実度モデルよりも桁違いに高速でありながら高い精度を達成する。
関連論文リスト
- RandONet: Shallow-Networks with Random Projections for learning linear and nonlinear operators [0.0]
ランダムプロジェクションに基づく演算子ネットワーク(RandONets)を提案する。
ランダムネット(RandONets)は、線形および非線形作用素を学習するランダムプロジェクションを持つ浅いネットワークである。
このタスクにおいて、RandONetsは数値近似の精度と計算コストの両面で、バニラ"DeepOnetsよりも優れていることを示す。
論文 参考訳(メタデータ) (2024-06-08T13:20:48Z) - Compositional Curvature Bounds for Deep Neural Networks [7.373617024876726]
安全クリティカルなアプリケーションにおけるニューラルネットワークの普及を脅かす重要な課題は、敵の攻撃に対する脆弱性である。
本研究では, 連続的に微分可能な深層ニューラルネットワークの2次挙動について検討し, 対向摂動に対する堅牢性に着目した。
ニューラルネットワークの第2微分の証明可能な上界を解析的に計算する新しいアルゴリズムを提案する。
論文 参考訳(メタデータ) (2024-06-07T17:50:15Z) - Systematic construction of continuous-time neural networks for linear dynamical systems [0.0]
本稿では,動的システムのサブクラスをモデル化するためのニューラルネットワーク構築の体系的アプローチについて論じる。
我々は、各ニューロンの出力が1次または2次常微分方程式(ODE)の解として連続的に進化する連続時間ニューラルネットワークの変種を用いる。
データからネットワークアーキテクチャとパラメータを導出する代わりに、所定のLTIシステムから直接スパースアーキテクチャとネットワークパラメータを計算するための勾配のないアルゴリズムを提案する。
論文 参考訳(メタデータ) (2024-03-24T16:16:41Z) - ConCerNet: A Contrastive Learning Based Framework for Automated
Conservation Law Discovery and Trustworthy Dynamical System Prediction [82.81767856234956]
本稿では,DNNに基づく動的モデリングの信頼性を向上させるために,ConCerNetという新しい学習フレームワークを提案する。
本手法は, 座標誤差と保存量の両方において, ベースラインニューラルネットワークよりも一貫して優れていることを示す。
論文 参考訳(メタデータ) (2023-02-11T21:07:30Z) - Reliable extrapolation of deep neural operators informed by physics or
sparse observations [2.887258133992338]
ディープニューラルネットワークは、ディープニューラルネットワークを介して無限次元関数空間間の非線形マッピングを学習することができる。
DeepONetsは科学と工学の新しいシミュレーションパラダイムを提供する。
本稿では,外挿下での安全な予測を保証する5つの信頼性学習手法を提案する。
論文 参考訳(メタデータ) (2022-12-13T03:02:46Z) - Maximum entropy exploration in contextual bandits with neural networks
and energy based models [63.872634680339644]
モデルには2つのクラスがあり、1つはニューラルネットワークを報酬推定器とし、もう1つはエネルギーベースモデルを示す。
両手法は、エネルギーベースモデルが最も優れた性能を持つ、よく知られた標準アルゴリズムより優れていることを示す。
これは、静的および動的設定でよく機能する新しいテクニックを提供し、特に連続的なアクション空間を持つ非線形シナリオに適している。
論文 参考訳(メタデータ) (2022-10-12T15:09:45Z) - Tractable Dendritic RNNs for Reconstructing Nonlinear Dynamical Systems [7.045072177165241]
線形スプラインベース展開により、片方向線形リカレントニューラルネットワーク(RNN)を増強する。
このアプローチは単純な PLRNN の理論的に魅力的な性質を全て保持するが、相対的に低次元の任意の非線形力学系を近似する能力は向上する。
論文 参考訳(メタデータ) (2022-07-06T09:43:03Z) - Physics-Inspired Temporal Learning of Quadrotor Dynamics for Accurate
Model Predictive Trajectory Tracking [76.27433308688592]
クオーロタのシステムダイナミクスを正確にモデル化することは、アジャイル、安全、安定したナビゲーションを保証する上で非常に重要です。
本稿では,ロボットの経験から,四重項系の力学を純粋に学習するための新しい物理インスパイアされた時間畳み込みネットワーク(PI-TCN)を提案する。
提案手法は,スパース時間的畳み込みと高密度フィードフォワード接続の表現力を組み合わせて,正確なシステム予測を行う。
論文 参考訳(メタデータ) (2022-06-07T13:51:35Z) - Provably Efficient Neural Estimation of Structural Equation Model: An
Adversarial Approach [144.21892195917758]
一般化構造方程式モデル(SEM)のクラスにおける推定について検討する。
線形作用素方程式をmin-maxゲームとして定式化し、ニューラルネットワーク(NN)でパラメータ化し、勾配勾配を用いてニューラルネットワークのパラメータを学習する。
提案手法は,サンプル分割を必要とせず,確固とした収束性を持つNNをベースとしたSEMの抽出可能な推定手順を初めて提供する。
論文 参考訳(メタデータ) (2020-07-02T17:55:47Z) - An Ode to an ODE [78.97367880223254]
我々は、O(d) 群上の行列フローに応じて主フローの時間依存パラメータが進化する ODEtoODE と呼ばれるニューラルODE アルゴリズムの新しいパラダイムを提案する。
この2つの流れのネストされたシステムは、訓練の安定性と有効性を提供し、勾配の消滅・爆発問題を確実に解決する。
論文 参考訳(メタデータ) (2020-06-19T22:05:19Z) - Rectified Linear Postsynaptic Potential Function for Backpropagation in
Deep Spiking Neural Networks [55.0627904986664]
スパイキングニューラルネットワーク(SNN)は、時間的スパイクパターンを用いて情報を表現し、伝達する。
本稿では,情報符号化,シナプス可塑性,意思決定におけるスパイクタイミングダイナミクスの寄与について検討し,将来のDeepSNNやニューロモルフィックハードウェアシステムの設計への新たな視点を提供する。
論文 参考訳(メタデータ) (2020-03-26T11:13:07Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。