論文の概要: Integrating Language Models for Enhanced Network State Monitoring in DRL-Based SFC Provisioning
- arxiv url: http://arxiv.org/abs/2502.11298v1
- Date: Sun, 16 Feb 2025 22:52:14 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-02-18 14:15:04.664285
- Title: Integrating Language Models for Enhanced Network State Monitoring in DRL-Based SFC Provisioning
- Title(参考訳): DRLに基づくSFCプロビジョニングにおけるネットワーク状態監視強化のための言語モデルの統合
- Authors: Parisa Fard Moshiri, Murat Arda Onsu, Poonam Lohan, Burak Kantarci, Emil Janulewicz,
- Abstract要約: 本稿では,Deep Reinforcement Learning(DRL)とLanguage Models(LM)を統合し,ネットワーク管理を強化する。
DRLからLMに最終的なVNF割り当てを供給することにより、システムはSFC、DC、VNFに関連するクエリを処理および応答し、リソース利用、ボトルネック検出、将来の需要計画に関するリアルタイムな洞察を可能にする。
- 参考スコア(独自算出の注目度): 5.37102888813454
- License:
- Abstract: Efficient Service Function Chain (SFC) provisioning and Virtual Network Function (VNF) placement are critical for enhancing network performance in modern architectures such as Software-Defined Networking (SDN) and Network Function Virtualization (NFV). While Deep Reinforcement Learning (DRL) aids decision-making in dynamic network environments, its reliance on structured inputs and predefined rules limits adaptability in unforeseen scenarios. Additionally, incorrect actions by a DRL agent may require numerous training iterations to correct, potentially reinforcing suboptimal policies and degrading performance. This paper integrates DRL with Language Models (LMs), specifically Bidirectional Encoder Representations from Transformers (BERT) and DistilBERT, to enhance network management. By feeding final VNF allocations from DRL into the LM, the system can process and respond to queries related to SFCs, DCs, and VNFs, enabling real-time insights into resource utilization, bottleneck detection, and future demand planning. The LMs are fine-tuned to our domain-specific dataset using Low-Rank Adaptation (LoRA). Results show that BERT outperforms DistilBERT with a lower test loss (0.28 compared to 0.36) and higher confidence (0.83 compared to 0.74), though BERT requires approximately 46% more processing time.
- Abstract(参考訳): Software-Defined Networking (SDN) や Network Function Virtualization (NFV) といったモダンなアーキテクチャにおいて、効率的なサービス機能チェーン(SFC) のプロビジョニングと仮想ネットワーク機能(VNF)の配置は、ネットワーク性能の向上に不可欠である。
Deep Reinforcement Learning (DRL)は動的ネットワーク環境における意思決定を支援するが、構造化された入力と事前定義されたルールに依存しているため、予期せぬシナリオでの適応性が制限される。
さらに、DRLエージェントによる誤ったアクションは、修正するために多くのトレーニングイテレーションを必要とし、潜在的に最適以下のポリシーを強化し、性能を低下させる可能性がある。
本稿では、DRLを言語モデル(LM)、具体的には、変換器(BERT)とDistilBERTからの双方向エンコーダ表現と統合し、ネットワーク管理を強化する。
DRLからLMに最終的なVNF割り当てを供給することにより、システムはSFC、DC、VNFに関連するクエリを処理および応答し、リソース利用、ボトルネック検出、将来の需要計画に関するリアルタイムな洞察を可能にする。
LMはLow-Rank Adaptation (LoRA)を使用して、ドメイン固有のデータセットに微調整されます。
その結果、BERT は DistilBERT よりも低いテスト損失 (0.28 対 0.36) と高い信頼性 (0.83 対 0.74 対 0.74) で優れていたが、BERT では処理時間が約 46% 必要であった。
関連論文リスト
- VinePPO: Unlocking RL Potential For LLM Reasoning Through Refined Credit Assignment [66.80143024475635]
VinePPOは不偏のモンテカルロ推定を計算するための簡単な手法である。
我々は、VinePPOが、MATHおよびGSM8Kデータセット間でPPOや他のRLフリーベースラインを一貫して上回ることを示す。
論文 参考訳(メタデータ) (2024-10-02T15:49:30Z) - Toward Efficient Convolutional Neural Networks With Structured Ternary Patterns [1.1965844936801797]
畳み込みニューラルネットワーク(ConvNets)は、ローカルデバイスリソースに厳しい要求を課す。
本稿では,静的畳み込みフィルタを用いて効率的なConvNetアーキテクチャの設計を行う。
論文 参考訳(メタデータ) (2024-07-20T10:18:42Z) - Joint Admission Control and Resource Allocation of Virtual Network Embedding via Hierarchical Deep Reinforcement Learning [69.00997996453842]
本稿では,仮想ネットワークの埋め込みにおいて,入出力制御と資源配分を併用して学習する深層強化学習手法を提案する。
HRL-ACRAは,受入率と長期平均収益の両面で,最先端のベースラインを上回っていることを示す。
論文 参考訳(メタデータ) (2024-06-25T07:42:30Z) - Value-Incentivized Preference Optimization: A Unified Approach to Online and Offline RLHF [80.32171988565999]
オンラインとオフラインのRLHFに統一的なアプローチを導入します。
VPOは、報酬関数の最大値推定を対応する値関数で正規化する。
テキスト要約とダイアログの実験は、VPOの実用性と有効性を検証する。
論文 参考訳(メタデータ) (2024-05-29T17:51:42Z) - Constrained Reinforcement Learning for Adaptive Controller Synchronization in Distributed SDN [7.277944770202078]
この研究は、AR/VRタスクのオフロードにおいて、高いレイテンシ閾値を保証するために、価値ベースとポリシーベースの手法の両方を含む深層強化学習(DRL)技術を検討することに焦点を当てる。
評価結果は,レイテンシやロードバランシングといった個々のネットワークメトリクスを最適化する上で,値ベースの手法が優れているのに対して,ポリシベースのアプローチは,突然のネットワーク変更や再構成に適応する上で,ロバスト性が高いことを示している。
論文 参考訳(メタデータ) (2024-01-21T21:57:22Z) - Hybrid Reinforcement Learning for Optimizing Pump Sustainability in
Real-World Water Distribution Networks [55.591662978280894]
本稿では,実世界の配水ネットワーク(WDN)のリアルタイム制御を強化するために,ポンプスケジューリング最適化問題に対処する。
我々の主な目的は、エネルギー消費と運用コストを削減しつつ、物理的な運用上の制約を遵守することである。
進化に基づくアルゴリズムや遺伝的アルゴリズムのような伝統的な最適化手法は、収束保証の欠如によってしばしば不足する。
論文 参考訳(メタデータ) (2023-10-13T21:26:16Z) - Optimization Guarantees of Unfolded ISTA and ADMM Networks With Smooth
Soft-Thresholding [57.71603937699949]
我々は,学習エポックの数の増加とともに,ほぼゼロに近いトレーニング損失を達成するための最適化保証について検討した。
トレーニングサンプル数に対する閾値は,ネットワーク幅の増加とともに増加することを示す。
論文 参考訳(メタデータ) (2023-09-12T13:03:47Z) - How Does Forecasting Affect the Convergence of DRL Techniques in O-RAN
Slicing? [20.344810727033327]
本稿では,DRLの収束性を高めるため,新しい予測支援型DRL手法とそのO-RAN実運用ワークフローを提案する。
提案手法では, 平均初期報酬値, 収束率, 収束シナリオ数において最大22.8%, 86.3%, 300%の改善が見られた。
論文 参考訳(メタデータ) (2023-09-01T14:30:04Z) - Federated Deep Reinforcement Learning for the Distributed Control of
NextG Wireless Networks [16.12495409295754]
次世代(NextG)ネットワークは、拡張現実(AR)やコネクテッド・自律走行車といった、インターネットの触覚を必要とするアプリケーションをサポートすることが期待されている。
データ駆動アプローチは、現在の運用条件に適応するネットワークの能力を改善することができる。
深部RL(DRL)は複雑な環境においても良好な性能を発揮することが示されている。
論文 参考訳(メタデータ) (2021-12-07T03:13:20Z) - JUMBO: Scalable Multi-task Bayesian Optimization using Offline Data [86.8949732640035]
追加データをクエリすることで制限をサイドステップするMBOアルゴリズムであるJUMBOを提案する。
GP-UCBに類似した条件下では, 応答が得られないことを示す。
実世界の2つの最適化問題に対する既存手法に対する性能改善を実証的に示す。
論文 参考訳(メタデータ) (2021-06-02T05:03:38Z) - Proactive and AoI-aware Failure Recovery for Stateful NFV-enabled
Zero-Touch 6G Networks: Model-Free DRL Approach [0.0]
ゼロタッチPFR(ZT-PFR)と呼ばれるモデルフリー深部強化学習(DRL)に基づくアクティブ障害回復フレームワークを提案する。
ZT-PFRは、ネットワーク機能仮想化(NFV)対応ネットワークにおける組み込みステートフル仮想ネットワーク機能(VNF)用です。
論文 参考訳(メタデータ) (2021-02-02T21:40:35Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。