Robot Deformable Object Manipulation via NMPC-generated Demonstrations in Deep Reinforcement Learning
- URL: http://arxiv.org/abs/2502.11375v1
- Date: Mon, 17 Feb 2025 02:41:46 GMT
- Title: Robot Deformable Object Manipulation via NMPC-generated Demonstrations in Deep Reinforcement Learning
- Authors: Haoyuan Wang, Zihao Dong, Hongliang Lei, Zejia Zhang, Weizhuang Shi, Wei Luo, Weiwei Wan, Jian Huang,
- Abstract summary: We conduct research on deformable object manipulation by robots based on demonstration-enhanced reinforcement learning (RL)
To improve the learning efficiency of RL, we enhanced the utilization of demonstration data from multiple aspects and proposed the HGCR-DDPG algorithm.
It uses a novel high-dimensional fuzzy approach for grasping-point selection, a refined behavior-cloning method to enhance data-driven learning in Rainbow-DDPG, and a sequential policy-learning strategy.
- Score: 13.30562217252464
- License:
- Abstract: In this work, we conducted research on deformable object manipulation by robots based on demonstration-enhanced reinforcement learning (RL). To improve the learning efficiency of RL, we enhanced the utilization of demonstration data from multiple aspects and proposed the HGCR-DDPG algorithm. It uses a novel high-dimensional fuzzy approach for grasping-point selection, a refined behavior-cloning method to enhance data-driven learning in Rainbow-DDPG, and a sequential policy-learning strategy. Compared to the baseline algorithm (Rainbow-DDPG), our proposed HGCR-DDPG achieved 2.01 times the global average reward and reduced the global average standard deviation to 45% of that of the baseline algorithm. To reduce the human labor cost of demonstration collection, we proposed a low-cost demonstration collection method based on Nonlinear Model Predictive Control (NMPC). Simulation experiment results show that demonstrations collected through NMPC can be used to train HGCR-DDPG, achieving comparable results to those obtained with human demonstrations. To validate the feasibility of our proposed methods in real-world environments, we conducted physical experiments involving deformable object manipulation. We manipulated fabric to perform three tasks: diagonal folding, central axis folding, and flattening. The experimental results demonstrate that our proposed method achieved success rates of 83.3%, 80%, and 100% for these three tasks, respectively, validating the effectiveness of our approach. Compared to current large-model approaches for robot manipulation, the proposed algorithm is lightweight, requires fewer computational resources, and offers task-specific customization and efficient adaptability for specific tasks.
Related papers
- MENTOR: Mixture-of-Experts Network with Task-Oriented Perturbation for Visual Reinforcement Learning [17.437573206368494]
Visual deep reinforcement learning (RL) enables robots to acquire skills from visual input for unstructured tasks.
Current algorithms suffer from low sample efficiency, limiting their practical applicability.
We present MENTOR, a method that improves both the architecture and optimization of RL agents.
arXiv Detail & Related papers (2024-10-19T04:31:54Z) - SERL: A Software Suite for Sample-Efficient Robotic Reinforcement
Learning [85.21378553454672]
We develop a library containing a sample efficient off-policy deep RL method, together with methods for computing rewards and resetting the environment.
We find that our implementation can achieve very efficient learning, acquiring policies for PCB board assembly, cable routing, and object relocation.
These policies achieve perfect or near-perfect success rates, extreme robustness even under perturbations, and exhibit emergent robustness recovery and correction behaviors.
arXiv Detail & Related papers (2024-01-29T10:01:10Z) - Tactile Active Inference Reinforcement Learning for Efficient Robotic
Manipulation Skill Acquisition [10.072992621244042]
We propose a novel method for skill learning in robotic manipulation called Tactile Active Inference Reinforcement Learning (Tactile-AIRL)
To enhance the performance of reinforcement learning (RL), we introduce active inference, which integrates model-based techniques and intrinsic curiosity into the RL process.
We demonstrate that our method achieves significantly high training efficiency in non-prehensile objects pushing tasks.
arXiv Detail & Related papers (2023-11-19T10:19:22Z) - Off-Policy Deep Reinforcement Learning Algorithms for Handling Various
Robotic Manipulator Tasks [0.0]
In this study, three reinforcement learning algorithms; DDPG, TD3 and SAC have been used to train Fetch robotic manipulator for four different tasks.
All of these algorithms are off-policy and able to achieve their desired target by optimizing both policy and value functions.
arXiv Detail & Related papers (2022-12-11T18:25:24Z) - Efficient Exploration using Model-Based Quality-Diversity with Gradients [4.788163807490196]
In this paper, we propose a model-based Quality-Diversity approach.
It extends existing QD methods to use gradients for efficient exploitation and leverage perturbations in imagination for efficient exploration.
We demonstrate that it maintains the divergent search capabilities of population-based approaches on tasks with deceptive rewards while significantly improving their sample efficiency and quality of solutions.
arXiv Detail & Related papers (2022-11-22T22:19:01Z) - Output Feedback Tube MPC-Guided Data Augmentation for Robust, Efficient
Sensorimotor Policy Learning [49.05174527668836]
Imitation learning (IL) can generate computationally efficient sensorimotor policies from demonstrations provided by computationally expensive model-based sensing and control algorithms.
In this work, we combine IL with an output feedback robust tube model predictive controller to co-generate demonstrations and a data augmentation strategy to efficiently learn neural network-based sensorimotor policies.
We numerically demonstrate that our method can learn a robust visuomotor policy from a single demonstration--a two-orders of magnitude improvement in demonstration efficiency compared to existing IL methods.
arXiv Detail & Related papers (2022-10-18T19:59:17Z) - Training and Evaluation of Deep Policies using Reinforcement Learning
and Generative Models [67.78935378952146]
GenRL is a framework for solving sequential decision-making problems.
It exploits the combination of reinforcement learning and latent variable generative models.
We experimentally determine the characteristics of generative models that have most influence on the performance of the final policy training.
arXiv Detail & Related papers (2022-04-18T22:02:32Z) - DEALIO: Data-Efficient Adversarial Learning for Imitation from
Observation [57.358212277226315]
In imitation learning from observation IfO, a learning agent seeks to imitate a demonstrating agent using only observations of the demonstrated behavior without access to the control signals generated by the demonstrator.
Recent methods based on adversarial imitation learning have led to state-of-the-art performance on IfO problems, but they typically suffer from high sample complexity due to a reliance on data-inefficient, model-free reinforcement learning algorithms.
This issue makes them impractical to deploy in real-world settings, where gathering samples can incur high costs in terms of time, energy, and risk.
We propose a more data-efficient IfO algorithm
arXiv Detail & Related papers (2021-03-31T23:46:32Z) - A Framework for Efficient Robotic Manipulation [79.10407063260473]
We show that a single robotic arm can learn sparse-reward manipulation policies from pixels.
We show that, given only 10 demonstrations, a single robotic arm can learn sparse-reward manipulation policies from pixels.
arXiv Detail & Related papers (2020-12-14T22:18:39Z) - Momentum-Based Policy Gradient Methods [133.53164856723782]
We propose a class of efficient momentum-based policy gradient methods for the model-free reinforcement learning.
In particular, we present a non-adaptive version of IS-MBPG method, which also reaches the best known sample complexity of $O(epsilon-3)$ without any large batches.
arXiv Detail & Related papers (2020-07-13T20:44:15Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.