Traffic State Estimation from Vehicle Trajectories with Anisotropic Gaussian Processes
- URL: http://arxiv.org/abs/2303.02311v2
- Date: Tue, 2 Apr 2024 14:34:37 GMT
- Title: Traffic State Estimation from Vehicle Trajectories with Anisotropic Gaussian Processes
- Authors: Fan Wu, Zhanhong Cheng, Huiyu Chen, Tony Z. Qiu, Lijun Sun,
- Abstract summary: We propose a kernel rotation re-parametrization scheme that transforms a standard isotropic GP kernel into an anisotropic kernel.
We also extend our approach to a multi-output GP, which allows for simultaneously estimating the traffic state for multiple lanes.
Considering current and future mixed traffic of connected vehicles (CVs) and human-driven vehicles (HVs), we experiment with the traffic state estimation (TSE) scheme from 5% to 50% available trajectories.
- Score: 21.13555047611666
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Accurately monitoring road traffic state is crucial for various applications, including travel time prediction, traffic control, and traffic safety. However, the lack of sensors often results in incomplete traffic state data, making it challenging to obtain reliable information for decision-making. This paper proposes a novel method for imputing traffic state data using Gaussian processes (GP) to address this issue. We propose a kernel rotation re-parametrization scheme that transforms a standard isotropic GP kernel into an anisotropic kernel, which can better model the congestion propagation in traffic flow data. The model parameters can be estimated by statistical inference using data from sparse probe vehicles or loop detectors. Moreover, the rotated GP method provides statistical uncertainty quantification for the imputed traffic state, making it more reliable. We also extend our approach to a multi-output GP, which allows for simultaneously estimating the traffic state for multiple lanes. We evaluate our method using real-world traffic data from the Next Generation simulation (NGSIM) and HighD programs, along with simulated data representing a traffic bottleneck scenario. Considering current and future mixed traffic of connected vehicles (CVs) and human-driven vehicles (HVs), we experiment with the traffic state estimation (TSE) scheme from 5% to 50% available trajectories, mimicking different CV penetration rates in a mixed traffic environment. We also test the traffic state estimation when traffic flow information is obtained from loop detectors. The results demonstrate the adaptability of our TSE method across different CV penetration rates and types of detectors, achieving state-of-the-art accuracy in scenarios with sparse observation rates.
Related papers
- A Holistic Framework Towards Vision-based Traffic Signal Control with
Microscopic Simulation [53.39174966020085]
Traffic signal control (TSC) is crucial for reducing traffic congestion that leads to smoother traffic flow, reduced idling time, and mitigated CO2 emissions.
In this study, we explore the computer vision approach for TSC that modulates on-road traffic flows through visual observation.
We introduce a holistic traffic simulation framework called TrafficDojo towards vision-based TSC and its benchmarking.
arXiv Detail & Related papers (2024-03-11T16:42:29Z) - Traffic Reconstruction and Analysis of Natural Driving Behaviors at
Unsignalized Intersections [1.7273380623090846]
This research involved recording traffic at various unsignalized intersections in Memphis, TN, during different times of the day.
After manually labeling video data to capture specific variables, we reconstructed traffic scenarios in the SUMO simulation environment.
The output data from these simulations offered a comprehensive analysis, including time-space diagrams for vehicle movement, travel time frequency distributions, and speed-position plots to identify bottleneck points.
arXiv Detail & Related papers (2023-12-22T09:38:06Z) - Correlating sparse sensing for large-scale traffic speed estimation: A
Laplacian-enhanced low-rank tensor kriging approach [76.45949280328838]
We propose a Laplacian enhanced low-rank tensor (LETC) framework featuring both lowrankness and multi-temporal correlations for large-scale traffic speed kriging.
We then design an efficient solution algorithm via several effective numeric techniques to scale up the proposed model to network-wide kriging.
arXiv Detail & Related papers (2022-10-21T07:25:57Z) - A Hybrid Physics Machine Learning Approach for Macroscopic Traffic State
Estimation [20.716261308570555]
This paper introduces an innovative traffic state estimation framework.
It uses limited information from traffic sensors as inputs to construct accurate and full-field estimated traffic state.
Experimental results show that the proposed method has been proved to estimate full-field traffic information accurately.
arXiv Detail & Related papers (2022-02-01T06:04:18Z) - Road Network Guided Fine-Grained Urban Traffic Flow Inference [108.64631590347352]
Accurate inference of fine-grained traffic flow from coarse-grained one is an emerging yet crucial problem.
We propose a novel Road-Aware Traffic Flow Magnifier (RATFM) that exploits the prior knowledge of road networks.
Our method can generate high-quality fine-grained traffic flow maps.
arXiv Detail & Related papers (2021-09-29T07:51:49Z) - DeepFlow: Abnormal Traffic Flow Detection Using Siamese Networks [4.544151613454639]
We develop a traffic anomaly detection system, referred to as DeepFlow, based on Siamese neural networks.
Our model can detect abnormal traffic flows by analyzing the trajectory data collected from the vehicles in a fleet.
Our results show that DeepFlow detects abnormal traffic patterns with an F1 score of 78%, while outperforming other existing approaches.
arXiv Detail & Related papers (2021-08-26T19:56:05Z) - An Experimental Urban Case Study with Various Data Sources and a Model
for Traffic Estimation [65.28133251370055]
We organize an experimental campaign with video measurement in an area within the urban network of Zurich, Switzerland.
We focus on capturing the traffic state in terms of traffic flow and travel times by ensuring measurements from established thermal cameras.
We propose a simple yet efficient Multiple Linear Regression (MLR) model to estimate travel times with fusion of various data sources.
arXiv Detail & Related papers (2021-08-02T08:13:57Z) - Learning Traffic Speed Dynamics from Visualizations [3.0969191504482243]
We present a deep learning method to learn the macroscopic traffic speed dynamics from space-time visualizations.
Compared to existing estimation approaches, our approach allows a finer estimation resolution.
We present the high-resolution traffic speed fields estimated for several freeway sections using the data obtained from the Next Generation Simulation Program (NGSIM) and German Highway (HighD) datasets.
arXiv Detail & Related papers (2021-05-04T11:17:43Z) - A Graph Convolutional Network with Signal Phasing Information for
Arterial Traffic Prediction [63.470149585093665]
arterial traffic prediction plays a crucial role in the development of modern intelligent transportation systems.
Many existing studies on arterial traffic prediction only consider temporal measurements of flow and occupancy from loop sensors and neglect the rich spatial relationships between upstream and downstream detectors.
We fill this gap by enhancing a deep learning approach, Diffusion Convolutional Recurrent Neural Network, with spatial information generated from signal timing plans at targeted intersections.
arXiv Detail & Related papers (2020-12-25T01:40:29Z) - Deep traffic light detection by overlaying synthetic context on
arbitrary natural images [49.592798832978296]
We propose a method to generate artificial traffic-related training data for deep traffic light detectors.
This data is generated using basic non-realistic computer graphics to blend fake traffic scenes on top of arbitrary image backgrounds.
It also tackles the intrinsic data imbalance problem in traffic light datasets, caused mainly by the low amount of samples of the yellow state.
arXiv Detail & Related papers (2020-11-07T19:57:22Z) - Traffic Data Imputation using Deep Convolutional Neural Networks [2.7647400328727256]
We show that a well trained neural network can learn traffic speed dynamics from time-space diagrams.
Our results show that with vehicle penetration probe levels as low as 5%, the proposed estimation method can provide a sound reconstruction of macroscopic traffic speeds.
arXiv Detail & Related papers (2020-01-21T12:52:58Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.