論文の概要: Competing LLM Agents in a Non-Cooperative Game of Opinion Polarisation
- arxiv url: http://arxiv.org/abs/2502.11649v1
- Date: Mon, 17 Feb 2025 10:41:55 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-02-18 14:09:25.356633
- Title: Competing LLM Agents in a Non-Cooperative Game of Opinion Polarisation
- Title(参考訳): 対極偏光の非協調ゲームにおけるLLMエージェントの競合
- Authors: Amin Qasmi, Usman Naseem, Mehwish Nasim,
- Abstract要約: 我々は、意見の形成と抵抗を分析するために、新しい非協調ゲームを導入する。
我々のシミュレーションでは、人口に影響を与えるために競合するLarge Language Model (LLM) エージェントが特徴的である。
このフレームワークは、リソースの最適化をエージェントの意思決定プロセスに統合する。
- 参考スコア(独自算出の注目度): 4.430022291929906
- License:
- Abstract: We introduce a novel non-cooperative game to analyse opinion formation and resistance, incorporating principles from social psychology such as confirmation bias, resource constraints, and influence penalties. Our simulation features Large Language Model (LLM) agents competing to influence a population, with penalties imposed for generating messages that propagate or counter misinformation. This framework integrates resource optimisation into the agents' decision-making process. Our findings demonstrate that while higher confirmation bias strengthens opinion alignment within groups, it also exacerbates overall polarisation. Conversely, lower confirmation bias leads to fragmented opinions and limited shifts in individual beliefs. Investing heavily in a high-resource debunking strategy can initially align the population with the debunking agent, but risks rapid resource depletion and diminished long-term influence.
- Abstract(参考訳): 本稿では, 社会心理学の原則を取り入れた, 意見形成と抵抗を分析できる新しい非協力ゲームを紹介した。
我々のシミュレーションでは、人口に影響を与えるために競合するLarge Language Model (LLM) エージェントを特徴とし、誤報の伝達や対策を行うメッセージを生成するために罰則を課している。
このフレームワークは、リソースの最適化をエージェントの意思決定プロセスに統合する。
以上の結果から,高い確認バイアスがグループ内の意見整合性を高める一方で,全体の偏極性も向上することが明らかとなった。
逆に、低い確認バイアスは、個々の信念の断片化された意見と限られた変化をもたらす。
高資源の処分戦略に多大な投資をすることで、当初は人口を処分業者と整合させることができるが、急速な資源の枯渇と長期的影響の減少のリスクがある。
関連論文リスト
- Towards Implicit Bias Detection and Mitigation in Multi-Agent LLM Interactions [25.809599403713506]
大規模言語モデル(LLM)は、社会をシミュレートし、多様な社会的タスクを実行するために、多くの研究で採用されている。
LLMは、人為的なデータに曝されるため、社会的偏見に影響を受けやすい。
本研究では,多エージェントLDM相互作用における性バイアスの存在について検討し,これらのバイアスを軽減するための2つの方法を提案する。
論文 参考訳(メタデータ) (2024-10-03T15:28:05Z) - Metacognitive Myopia in Large Language Models [0.0]
大規模言語モデル(LLM)は、文化的に固有のステレオタイプ、クラウドの道徳的判断、あるいは多数派の肯定的な評価を強化する潜在的に有害なバイアスを示す。
認知・生態的枠組みとしてメタ認知ミオピアを提案する。
我々の理論的枠組みは, メタ認知, 監視, 制御の2つの要素が欠如していることが, メタ認知性ミオピアの5つの症状を引き起こすことを示唆している。
論文 参考訳(メタデータ) (2024-08-10T14:43:57Z) - Walking in Others' Shoes: How Perspective-Taking Guides Large Language Models in Reducing Toxicity and Bias [16.85625861663094]
社会心理学の原則に触発されて, LLMに多様な人間の視点を取り入れ, 反応を自己制御させる, textscPeT という新しい戦略を提案する。
2つの商用LCMと3つのオープンソースLCMに対して厳密な評価およびアブレーション研究を行い、より有害な応答を生み出す上でのtextscPeT の優位性を明らかにした。
論文 参考訳(メタデータ) (2024-07-22T04:25:01Z) - Long-Term Fairness in Sequential Multi-Agent Selection with Positive Reinforcement [21.44063458579184]
大学入学や採用のような選抜プロセスでは、少数派からの応募者に対する偏見は肯定的なフィードバックをもたらすと仮定される。
グリーディスコアとフェアネスのバランスをとるマルチエージェント・フェア・グリーディ政策を提案する。
以上の結果から, 正の強化は長期的公正性にとって有望なメカニズムであるが, 進化モデルの変動に頑健な政策を慎重に設計する必要があることが示唆された。
論文 参考訳(メタデータ) (2024-07-10T04:03:23Z) - Toward Optimal LLM Alignments Using Two-Player Games [86.39338084862324]
本稿では,対戦相手と防御エージェントの反復的相互作用を含む2エージェントゲームのレンズによるアライメントについて検討する。
この反復的強化学習最適化がエージェントによって誘導されるゲームに対するナッシュ平衡に収束することを理論的に実証する。
安全シナリオにおける実験結果から、このような競争環境下での学習は、完全に訓練するエージェントだけでなく、敵エージェントと防御エージェントの両方に対する一般化能力の向上したポリシーにつながることが示されている。
論文 参考訳(メタデータ) (2024-06-16T15:24:50Z) - Multi-Agent Imitation Learning: Value is Easy, Regret is Hard [52.31989962031179]
我々は,エージェント群を協調させようとする学習者の視点で,マルチエージェント模倣学習(MAIL)問題を研究する。
MAILの以前の作業のほとんどは、基本的には、デモのサポート内で専門家の振る舞いにマッチする問題を減らすものです。
エージェントが戦略的でないという仮定の下で、学習者と専門家の間の価値ギャップをゼロにするのに十分であるが、戦略的エージェントによる逸脱を保証するものではない。
論文 参考訳(メタデータ) (2024-06-06T16:18:20Z) - Exploring the Jungle of Bias: Political Bias Attribution in Language Models via Dependency Analysis [86.49858739347412]
大規模言語モデル(LLM)は、これらのモデルにおけるバイアスの頻度とその緩和に関する激しい議論を引き起こしている。
本稿では,意思決定プロセスに寄与する属性の抽出と仲介を行うためのプロンプトベースの手法を提案する。
観察された異なる治療は、少なくとも部分的には、属性の相違とモデルの相違によるものであることが判明した。
論文 参考訳(メタデータ) (2023-11-15T00:02:25Z) - Modeling the Q-Diversity in a Min-max Play Game for Robust Optimization [61.39201891894024]
群分布的ロバスト最適化(群 DRO)は、事前定義された群に対する最悪の損失を最小限にすることができる。
グループDROフレームワークをQ-Diversityを提案して再構築する。
インタラクティブなトレーニングモードによって特徴付けられるQ-Diversityは、アノテーションからグループ識別を緩和し、直接パラメータ化を行う。
論文 参考訳(メタデータ) (2023-05-20T07:02:27Z) - Monotonic Improvement Guarantees under Non-stationarity for
Decentralized PPO [66.5384483339413]
我々は,MARL(Multi-Agent Reinforcement Learning)における分散政策の最適化のための新しい単調改善保証を提案する。
本研究では,訓練中のエージェント数に基づいて,独立した比率を限定することにより,信頼領域の制約を原則的に効果的に実施可能であることを示す。
論文 参考訳(メタデータ) (2022-01-31T20:39:48Z) - Coordinated Online Learning for Multi-Agent Systems with Coupled
Constraints and Perturbed Utility Observations [91.02019381927236]
本研究では, 資源制約を満たすため, エージェントを安定な集団状態へ誘導する新しい手法を提案する。
提案手法は,ゲームラグランジアンの拡張によるリソース負荷に基づく分散リソース価格設定手法である。
論文 参考訳(メタデータ) (2020-10-21T10:11:17Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。