論文の概要: Deep Spatio-Temporal Neural Network for Air Quality Reanalysis
- arxiv url: http://arxiv.org/abs/2502.11941v1
- Date: Mon, 17 Feb 2025 15:52:22 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-02-18 14:14:29.219938
- Title: Deep Spatio-Temporal Neural Network for Air Quality Reanalysis
- Title(参考訳): 大気質解析のための深部時空間ニューラルネットワーク
- Authors: Ammar Kheder, Benjamin Foreback, Lili Wang, Zhi-Song Liu, Michael Boy,
- Abstract要約: 近い将来,観測ステーションと観測ステーションの時間的再解析モデルであるAQ-Netを提案する。
細粒度空間空気質の推定を学習するために、ニューラルネットワークにAQ-Netを組み込む。
- 参考スコア(独自算出の注目度): 17.089907362560197
- License:
- Abstract: Air quality prediction is key to mitigating health impacts and guiding decisions, yet existing models tend to focus on temporal trends while overlooking spatial generalization. We propose AQ-Net, a spatiotemporal reanalysis model for both observed and unobserved stations in the near future. AQ-Net utilizes the LSTM and multi-head attention for the temporal regression. We also propose a cyclic encoding technique to ensure continuous time representation. To learn fine-grained spatial air quality estimation, we incorporate AQ-Net with the neural kNN to explore feature-based interpolation, such that we can fill the spatial gaps given coarse observation stations. To demonstrate the efficiency of our model for spatiotemporal reanalysis, we use data from 2013-2017 collected in northern China for PM2.5 analysis. Extensive experiments show that AQ-Net excels in air quality reanalysis, highlighting the potential of hybrid spatio-temporal models to better capture environmental dynamics, especially in urban areas where both spatial and temporal variability are critical.
- Abstract(参考訳): 空気質の予測は、健康への影響を緩和し、意思決定を導く上で鍵となるが、既存のモデルは、空間的な一般化を見越しながら、時間的傾向に焦点を当てる傾向がある。
近い将来,観測局と観測局の両方を対象とした時空間再解析モデルであるAQ-Netを提案する。
AQ-NetはLSTMとマルチヘッドアテンションを時間回帰に利用している。
また、連続時間表現を保証するための巡回符号化手法を提案する。
そこで我々は,AQ-Netをニューラルネットワークに組み込んで,粗い観測ステーションの空間ギャップを埋めるため,特徴量に基づく補間を探索する。
時空間再分析のためのモデルの有効性を示すため,中国北部で収集された2013-2017年のデータを用いてPM2.5分析を行った。
大規模な実験により、AQ-Netは大気質の再分析に優れており、特に空間的・時間的変動が重要となる都市部において、環境動態をよりよく捉えるためのハイブリッド時空間モデルの可能性を強調している。
関連論文リスト
- Conservation-informed Graph Learning for Spatiotemporal Dynamics Prediction [84.26340606752763]
本稿では,保護インフォームドGNN(CiGNN)について紹介する。
このネットワークは、保守的かつ非保守的な情報が、潜時的行進戦略によって多次元空間を通過する対称性による一般的な対称性保存則に従うように設計されている。
結果は,CiGNNが顕著なベースライン精度と一般化性を示し,様々な時間的ダイナミクスの予測のための学習に容易に適用可能であることを示した。
論文 参考訳(メタデータ) (2024-12-30T13:55:59Z) - Generating Fine-Grained Causality in Climate Time Series Data for Forecasting and Anomaly Detection [67.40407388422514]
我々は、TBN Granger Causalityという概念的微粒因果モデルを設計する。
次に, TBN Granger Causality を生成的に発見する TacSas という, エンドツーエンドの深部生成モデルを提案する。
気候予報のための気候指標ERA5と、極度気象警報のためのNOAAの極端気象基準でTacSasを試験する。
論文 参考訳(メタデータ) (2024-08-08T06:47:21Z) - SFANet: Spatial-Frequency Attention Network for Weather Forecasting [54.470205739015434]
天気予報は様々な分野において重要な役割を担い、意思決定とリスク管理を推進している。
伝統的な手法は、しばしば気象系の複雑な力学を捉えるのに苦労する。
本稿では,これらの課題に対処し,天気予報の精度を高めるための新しい枠組みを提案する。
論文 参考訳(メタデータ) (2024-05-29T08:00:15Z) - Spatio-Temporal Field Neural Networks for Air Quality Inference [13.582971831446647]
本稿では,新しいモデルSpatio-Temporal Field Neural Networkとその対応するフレームワークであるPraamidal Inferenceを提案する。
本モデルは中国本土における大気質の全国的推定における最先端の性能を実現する。
論文 参考訳(メタデータ) (2024-03-02T10:14:42Z) - Long-term drought prediction using deep neural networks based on geospatial weather data [75.38539438000072]
農業計画や保険には1年前から予測される高品質の干ばつが不可欠だ。
私たちは、体系的なエンドツーエンドアプローチを採用するエンドツーエンドアプローチを導入することで、干ばつデータに取り組みます。
主な発見は、TransformerモデルであるEarthFormerが、正確な短期(最大6ヶ月)の予測を行う際の例外的なパフォーマンスである。
論文 参考訳(メタデータ) (2023-09-12T13:28:06Z) - Spatiotemporal Graph Convolutional Recurrent Neural Network Model for
Citywide Air Pollution Forecasting [0.0]
大気汚染は様々な方法で変化し、多くの複雑な要因に依存する。
画像に基づく表現は、大気汚染やその他の影響要因が自然なグラフ構造を持つため理想的ではないかもしれない。
グラフ畳み込みネットワーク(GCN: Graph Convolutional Network)は、都市全体における空気質の読み出しの空間的特徴を効率的に表現することができる。
本手法は, 実環境大気汚染データを用いたハイブリッドGCN法よりも優れている。
論文 参考訳(メタデータ) (2023-04-25T07:57:07Z) - A case study of spatiotemporal forecasting techniques for weather forecasting [4.347494885647007]
実世界のプロセスの相関は時間的であり、それらによって生成されたデータは空間的および時間的進化の両方を示す。
時系列モデルが数値予測の代替となる。
本研究では,分解時間予測モデルにより計算コストを低減し,精度を向上することを示した。
論文 参考訳(メタデータ) (2022-09-29T13:47:02Z) - Forecasting large-scale circulation regimes using deformable
convolutional neural networks and global spatiotemporal climate data [86.1450118623908]
変形可能な畳み込みニューラルネットワーク(deCNN)に基づく教師あり機械学習手法の検討
今後1~15日にわたって北大西洋-欧州の気象条件を予測した。
より広い視野で見れば、通常の畳み込みニューラルネットワークよりも5~6日を超えるリードタイムでかなり優れた性能を発揮することが分かる。
論文 参考訳(メタデータ) (2022-02-10T11:37:00Z) - Joint Air Quality and Weather Prediction Based on Multi-Adversarial
Spatiotemporal Networks [44.34236994440102]
本稿では,複数対数連続グラフニューラルネットワーク(MasterGNN)を共同空気質と天気予報のために提案する。
具体的には,大気質と気象モニタリングステーション間の不均一な自己時間相関をモデル化するグラフニューラルネットワークを提案する。
論文 参考訳(メタデータ) (2020-12-30T04:42:03Z) - Spatio-Temporal Functional Neural Networks [11.73856529960872]
本稿では,多くの研究者によって有効性が証明された時間回帰モデルであるニューラル・ファンクショナル・ネットワーク(FNN)の2つの新しい拡張を提案する。
提案したモデルは気象分野における実用的で挑戦的な降水予測問題を解決するために展開される。
論文 参考訳(メタデータ) (2020-09-11T21:32:35Z) - Federated Learning in the Sky: Aerial-Ground Air Quality Sensing
Framework with UAV Swarms [53.38353133198842]
空気質は人間の健康に大きく影響し、空気質指数(AQI)の正確かつタイムリーな予測がますます重要になっている。
本稿では, 精密な3次元空気質モニタリングと予測を行うための, 新たなフェデレーション学習型地上空気質検知フレームワークを提案する。
地中センシングシステムでは, グラフ畳み込みニューラルネットワークを用いたLong Short-Term Memory (GC-LSTM) モデルを提案し, 高精度, リアルタイム, 将来的なAQI推論を実現する。
論文 参考訳(メタデータ) (2020-07-23T13:32:47Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。