論文の概要: Evolving Hard Maximum Cut Instances for Quantum Approximate Optimization Algorithms
- arxiv url: http://arxiv.org/abs/2502.12012v1
- Date: Thu, 30 Jan 2025 14:32:06 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-03-02 04:52:30.815442
- Title: Evolving Hard Maximum Cut Instances for Quantum Approximate Optimization Algorithms
- Title(参考訳): 量子近似最適化アルゴリズムのためのハード・マックス・カット・インスタンスの進化
- Authors: Shuaiqun Pan, Yash J. Patel, Aneta Neumann, Frank Neumann, Thomas Bäck, Hao Wang,
- Abstract要約: Recursive Quantum Approximate Optimization Algorithm (RQAOA) などの変分量子アルゴリズムが普及している。
本研究では、ユニークなフィットネス機能を備えた進化的アルゴリズムを用いる。
このアプローチは、グラフオートエンコーダの潜在空間内のハード最大カットインスタンスをターゲットにしている。
- 参考スコア(独自算出の注目度): 11.930061411630442
- License:
- Abstract: Variational quantum algorithms, such as the Recursive Quantum Approximate Optimization Algorithm (RQAOA), have become increasingly popular, offering promising avenues for employing Noisy Intermediate-Scale Quantum devices to address challenging combinatorial optimization tasks like the maximum cut problem. In this study, we utilize an evolutionary algorithm equipped with a unique fitness function. This approach targets hard maximum cut instances within the latent space of a Graph Autoencoder, identifying those that pose significant challenges or are particularly tractable for RQAOA, in contrast to the classic Goemans and Williamson algorithm. Our findings not only delineate the distinct capabilities and limitations of each algorithm but also expand our understanding of RQAOA's operational limits. Furthermore, the diverse set of graphs we have generated serves as a crucial benchmarking asset, emphasizing the need for more advanced algorithms to tackle combinatorial optimization challenges. Additionally, our results pave the way for new avenues in graph generation research, offering exciting opportunities for future explorations.
- Abstract(参考訳): Recursive Quantum Approximate Optimization Algorithm (RQAOA)のような変分量子アルゴリズムが人気となり、最大カット問題のような組合せ最適化の課題に対処するために、ノイズ中間スケールの量子デバイスを使用するための有望な道を提供する。
本研究では、ユニークなフィットネス機能を備えた進化的アルゴリズムを用いる。
このアプローチは、グラフオートエンコーダの潜在空間内のハードな最大カットインスタンスをターゲットにしており、古典的なゴーマンとウィリアムソンのアルゴリズムとは対照的に、重要な課題を生じているか、特にRQAOAに魅力があるものを特定する。
我々の発見は、各アルゴリズムの異なる能力と限界を規定するだけでなく、RQAOAの運用限界に対する理解も拡大する。
さらに、私たちが生成した多種多様なグラフは、組合せ最適化の課題に取り組むためのより高度なアルゴリズムの必要性を強調し、重要なベンチマークアセットとして機能する。
さらに、グラフ生成研究における新たな道のりを開拓し、将来の探索にエキサイティングな機会を提供する。
関連論文リスト
- Quantum Graph Optimization Algorithm [7.788671046805509]
本研究では,メッセージパス機構を統合した新しい変分量子グラフ最適化アルゴリズムを提案する。
QUBOタスクのスケーラビリティに関して,本アルゴリズムはQAOAよりも優れた性能を示す。
論文 参考訳(メタデータ) (2024-04-09T16:25:07Z) - Quantum Subroutine for Variance Estimation: Algorithmic Design and Applications [80.04533958880862]
量子コンピューティングは、アルゴリズムを設計する新しい方法の基礎となる。
どの場の量子スピードアップが達成できるかという新たな課題が生じる。
量子サブルーチンの設計は、従来のサブルーチンよりも効率的で、新しい強力な量子アルゴリズムに固い柱を向ける。
論文 参考訳(メタデータ) (2024-02-26T09:32:07Z) - Iterative Quantum Algorithms for Maximum Independent Set: A Tale of
Low-Depth Quantum Algorithms [0.0]
我々は、反復最大量子アルゴリズム(Iterative Maximum Quantum Algorithms)と呼ばれる、量子最適化のための新しいハイブリッドアプローチのクラスについて研究する。
深度$p=1$のQAOAの場合、このアルゴリズムはMISの古典的欲求アルゴリズムと全く同じ操作と選択を行う。
論文 参考訳(メタデータ) (2023-09-22T18:00:03Z) - Quantum-Informed Recursive Optimization Algorithms [0.0]
最適化問題に対する量子インフォームド再帰最適化(QIRO)アルゴリズムのファミリを提案し,実装する。
提案手法は、量子資源を利用して、問題固有の古典的還元ステップで使用される情報を得る。
バックトラック技術を用いて、量子ハードウェアの要求を増大させることなく、アルゴリズムの性能をさらに向上させる。
論文 参考訳(メタデータ) (2023-08-25T18:02:06Z) - A Review on Quantum Approximate Optimization Algorithm and its Variants [47.89542334125886]
量子近似最適化アルゴリズム(Quantum Approximate Optimization Algorithm、QAOA)は、難解な最適化問題を解くことを目的とした、非常に有望な変分量子アルゴリズムである。
この総合的なレビューは、様々なシナリオにおけるパフォーマンス分析を含む、QAOAの現状の概要を提供する。
我々は,提案アルゴリズムの今後の展望と方向性を探りながら,選択したQAOA拡張と変種の比較研究を行う。
論文 参考訳(メタデータ) (2023-06-15T15:28:12Z) - Quadratic Unconstrained Binary Optimisation via Quantum-Inspired
Annealing [58.720142291102135]
本稿では,2次非制約二項最適化の事例に対する近似解を求める古典的アルゴリズムを提案する。
我々は、チューニング可能な硬さと植え付けソリューションを備えた大規模問題インスタンスに対して、我々のアプローチをベンチマークする。
論文 参考訳(メタデータ) (2021-08-18T09:26:17Z) - Variational Quantum Optimization with Multi-Basis Encodings [62.72309460291971]
マルチバスグラフ複雑性と非線形活性化関数の2つの革新の恩恵を受ける新しい変分量子アルゴリズムを導入する。
その結果,最適化性能が向上し,有効景観が2つ向上し,測定の進歩が減少した。
論文 参考訳(メタデータ) (2021-06-24T20:16:02Z) - Quantum constraint learning for quantum approximate optimization
algorithm [0.0]
本稿では,探索部分空間を厳しく制約するミキサーハミルトンを学習するための量子機械学習手法を提案する。
学習したユニタリを直接適応可能なアンサッツを使用してQAOAフレームワークにプラグインすることができる。
また,Wasserstein距離を用いた近似最適化アルゴリズムの性能を,制約なしで評価する直感的計量法を開発した。
論文 参考訳(メタデータ) (2021-05-14T11:31:14Z) - Adaptive pruning-based optimization of parameterized quantum circuits [62.997667081978825]
Variisyハイブリッド量子古典アルゴリズムは、ノイズ中間量子デバイスの使用を最大化する強力なツールである。
我々は、変分量子アルゴリズムで使用されるそのようなアンサーゼを「効率的な回路訓練」(PECT)と呼ぶ戦略を提案する。
すべてのアンサッツパラメータを一度に最適化する代わりに、PECTは一連の変分アルゴリズムを起動する。
論文 参考訳(メタデータ) (2020-10-01T18:14:11Z) - Space-efficient binary optimization for variational computing [68.8204255655161]
本研究では,トラベリングセールスマン問題に必要なキュービット数を大幅に削減できることを示す。
また、量子ビット効率と回路深さ効率のモデルを円滑に補間する符号化方式を提案する。
論文 参考訳(メタデータ) (2020-09-15T18:17:27Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。