論文の概要: Culture is Not Trivia: Sociocultural Theory for Cultural NLP
- arxiv url: http://arxiv.org/abs/2502.12057v1
- Date: Mon, 17 Feb 2025 17:25:11 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-02-18 14:16:47.763735
- Title: Culture is Not Trivia: Sociocultural Theory for Cultural NLP
- Title(参考訳): 文化はトリヴィアではない:文化NLPの社会文化的理論
- Authors: Naitian Zhou, David Bamman, Isaac L. Bleaman,
- Abstract要約: これらの方法論的限界は理論的ギャップのシンプトマティックなものであると論じる。
我々は、このギャップを埋めるために、社会文化的言語学から発達した文化の理論を描いている。
- 参考スコア(独自算出の注目度): 10.76392030245232
- License:
- Abstract: The field of cultural NLP has recently experienced rapid growth, driven by a pressing need to ensure that language technologies are effective and safe across a pluralistic user base. This work has largely progressed without a shared conception of culture, instead choosing to rely on a wide array of cultural proxies. However, this leads to a number of recurring limitations: coarse national boundaries fail to capture nuanced differences that lay within them, limited coverage restricts datasets to only a subset of usually highly-represented cultures, and a lack of dynamicity results in static cultural benchmarks that do not change as culture evolves. In this position paper, we argue that these methodological limitations are symptomatic of a theoretical gap. We draw on a well-developed theory of culture from sociocultural linguistics to fill this gap by 1) demonstrating in a case study how it can clarify methodological constraints and affordances, 2) offering theoretically-motivated paths forward to achieving cultural competence, and 3) arguing that localization is a more useful framing for the goals of much current work in cultural NLP.
- Abstract(参考訳): 文化的NLPの分野は近年急速に成長しており、言語技術が多元的ユーザベースで有効かつ安全であることを確実にする必要性が高まっている。
この作品は、文化の概念を共有することなく大きく進歩し、より広い範囲の文化的プロキシに頼ることを選んだ。
しかし、これは、粗い国家境界が、その内にある微妙な違いを捉えていないこと、限られた範囲がデータセットを、通常高度に表現された文化のサブセットに制限すること、動的性の欠如が、文化が進化するにつれて変化しない静的な文化的ベンチマークをもたらすこと、など、繰り返し発生する制限に繋がる。
本稿では,これらの方法論的限界は理論的ギャップのシンプトマティックなものであることを論じる。
我々は、このギャップを埋めるために、社会文化言語学から発達した文化理論を描いている。
1) 方法論上の制約及び余裕を明確化するための事例研究の実施
2 文化的能力を達成するための理論的動機づけた道を提供すること、及び
3) ローカライゼーションは,文化的NLPにおける現在の作業の目標に対して,より有用な枠組みである,と論じる。
関連論文リスト
- CultureVLM: Characterizing and Improving Cultural Understanding of Vision-Language Models for over 100 Countries [63.00147630084146]
視覚言語モデル(VLM)は高度な人間とAIの相互作用を持つが、文化的な理解に苦慮している。
CultureVerseは大規模なマルチモーダルベンチマークで、682の文化的概念、188の国/地域、15の文化的概念、3の質問タイプをカバーしている。
本稿では,文化理解の大幅な向上を実現するために,我々のデータセットを微調整したVLMのシリーズであるCultureVLMを提案する。
論文 参考訳(メタデータ) (2025-01-02T14:42:37Z) - Self-Pluralising Culture Alignment for Large Language Models [36.689491885394034]
本稿では,大規模言語モデルと多言語文化との整合性を実現するフレームワークであるCultureSPAを提案する。
カルチャー・アウェア/アウェアアウトプットを比較することで、カルチャー関連インスタンスを検出し、収集することができる。
広範囲な実験により、CultureSPAは、一般の能力を損なうことなく、多様な文化へのLCMのアライメントを著しく改善することが示された。
論文 参考訳(メタデータ) (2024-10-16T19:06:08Z) - Navigating the Cultural Kaleidoscope: A Hitchhiker's Guide to Sensitivity in Large Language Models [4.771099208181585]
LLMはますますグローバルなアプリケーションにデプロイされ、さまざまなバックグラウンドを持つユーザが尊敬され、理解されることが保証される。
文化的な害は、これらのモデルが特定の文化的規範と一致しないときに起こり、文化的な価値観の誤った表現や違反をもたらす。
潜在的な文化的不感を露呈するシナリオを通じて、異なる文化的文脈におけるモデルアウトプットを評価するために作成された文化的調和テストデータセットと、多様なアノテータからのフィードバックに基づいた微調整による文化的感受性の回復を目的とした、文化的に整合した選好データセットである。
論文 参考訳(メタデータ) (2024-10-15T18:13:10Z) - How Well Do LLMs Identify Cultural Unity in Diversity? [12.982460687543952]
本稿では,概念の文化的統一性を理解するために,デコーダのみの大規模言語モデル(LLM)を評価するためのベンチマークデータセットを提案する。
CUNITは、10か国で285の伝統的な文化的概念に基づいて構築された1,425の評価例で構成されている。
高い関連性を持つ異文化のコンセプトペアを識別するLLMの能力を評価するために,コントラストマッチングタスクを設計する。
論文 参考訳(メタデータ) (2024-08-09T14:45:22Z) - Extrinsic Evaluation of Cultural Competence in Large Language Models [53.626808086522985]
本稿では,2つのテキスト生成タスクにおける文化能力の評価に焦点をあてる。
我々は,文化,特に国籍の明示的なキューが,そのプロンプトに乱入している場合のモデル出力を評価する。
異なる国におけるアウトプットのテキスト類似性とこれらの国の文化的価値との間には弱い相関関係がある。
論文 参考訳(メタデータ) (2024-06-17T14:03:27Z) - CulturePark: Boosting Cross-cultural Understanding in Large Language Models [63.452948673344395]
本稿では,LLMを利用した文化データ収集のためのマルチエージェント通信フレームワークであるCultureParkを紹介する。
人間の信念、規範、習慣をカプセル化した高品質な異文化対話を生成する。
我々はこれらのモデルを,コンテンツモデレーション,文化的アライメント,文化教育という3つの下流課題にまたがって評価する。
論文 参考訳(メタデータ) (2024-05-24T01:49:02Z) - Understanding the Capabilities and Limitations of Large Language Models for Cultural Commonsense [98.09670425244462]
大規模言語モデル(LLM)は、かなりの常識的理解を示している。
本稿では,文化的コモンセンスタスクの文脈におけるいくつかの最先端LCMの能力と限界について検討する。
論文 参考訳(メタデータ) (2024-05-07T20:28:34Z) - What You Use is What You Get: Unforced Errors in Studying Cultural Aspects in Agile Software Development [2.9418191027447906]
文化的特徴の影響を調べることは、多面的な文化概念のために困難である。
文化的・社会的側面は、実際にの使用が成功する上で非常に重要である。
論文 参考訳(メタデータ) (2024-04-25T20:08:37Z) - Massively Multi-Cultural Knowledge Acquisition & LM Benchmarking [48.21982147529661]
本稿では,多文化知識獲得のための新しいアプローチを提案する。
本手法は,文化トピックに関するウィキペディア文書からリンクページの広範囲なネットワークへ戦略的にナビゲートする。
私たちの仕事は、AIにおける文化的格差のギャップを深く理解し、橋渡しするための重要なステップです。
論文 参考訳(メタデータ) (2024-02-14T18:16:54Z) - Not All Countries Celebrate Thanksgiving: On the Cultural Dominance in
Large Language Models [89.94270049334479]
本稿では,大規模言語モデル(LLM)における文化的優位性について述べる。
LLMは、ユーザーが非英語で尋ねるときに期待する文化とは無関係な、不適切な英語文化関連の回答を提供することが多い。
論文 参考訳(メタデータ) (2023-10-19T05:38:23Z) - Cultural Alignment in Large Language Models: An Explanatory Analysis Based on Hofstede's Cultural Dimensions [10.415002561977655]
本研究は,ホフステデの文化次元の枠組みを用いて文化的アライメントを定量化する文化アライメントテスト (Hoftede's CAT) を提案する。
我々は、米国、中国、アラブ諸国といった地域の文化的側面に対して、大規模言語モデル(LLM)を定量的に評価する。
その結果, LLMの文化的アライメントを定量化し, 説明的文化的次元におけるLCMの差異を明らかにすることができた。
論文 参考訳(メタデータ) (2023-08-25T14:50:13Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。