An Interpretable Automated Mechanism Design Framework with Large Language Models
- URL: http://arxiv.org/abs/2502.12203v1
- Date: Sun, 16 Feb 2025 12:33:03 GMT
- Title: An Interpretable Automated Mechanism Design Framework with Large Language Models
- Authors: Jiayuan Liu, Mingyu Guo, Vincent Conitzer,
- Abstract summary: Mechanism has long been a cornerstone of economic theory, with traditional approaches relying on mathematical derivations.
Recent automated approaches, including differentiable economics with neural networks, have emerged for designing payments and allocations.
We introduce a novel framework that reformulates mechanism design as a code generation task.
- Score: 26.89126917895188
- License:
- Abstract: Mechanism design has long been a cornerstone of economic theory, with traditional approaches relying on mathematical derivations. Recently, automated approaches, including differentiable economics with neural networks, have emerged for designing payments and allocations. While both analytical and automated methods have advanced the field, they each face significant weaknesses: mathematical derivations are not automated and often struggle to scale to complex problems, while automated and especially neural-network-based approaches suffer from limited interpretability. To address these challenges, we introduce a novel framework that reformulates mechanism design as a code generation task. Using large language models (LLMs), we generate heuristic mechanisms described in code and evolve them to optimize over some evaluation metrics while ensuring key design criteria (e.g., strategy-proofness) through a problem-specific fixing process. This fixing process ensures any mechanism violating the design criteria is adjusted to satisfy them, albeit with some trade-offs in performance metrics. These trade-offs are factored in during the LLM-based evolution process. The code generation capabilities of LLMs enable the discovery of novel and interpretable solutions, bridging the symbolic logic of mechanism design and the generative power of modern AI. Through rigorous experimentation, we demonstrate that LLM-generated mechanisms achieve competitive performance while offering greater interpretability compared to previous approaches. Notably, our framework can rediscover existing manually designed mechanisms and provide insights into neural-network based solutions through Programming-by-Example. These results highlight the potential of LLMs to not only automate but also enhance the transparency and scalability of mechanism design, ensuring safe deployment of the mechanisms in society.
Related papers
- Towards a Probabilistic Framework for Analyzing and Improving LLM-Enabled Software [0.0]
Large language model (LLM)-enabled systems are a significant challenge in software engineering.
We propose a probabilistic framework for systematically analyzing and improving these systems.
We apply the framework to the autoformalization problem, where natural language documentation is transformed into formal program specifications.
arXiv Detail & Related papers (2025-01-10T22:42:06Z) - Rethinking Strategic Mechanism Design In The Age Of Large Language Models: New Directions For Communication Systems [1.0468715529145969]
This paper explores the application of large language models (LLMs) in designing strategic mechanisms for specific purposes in communication networks.
We propose leveraging LLMs to automate or semi-automate the process of strategic mechanism design, from intent specification to final formulation.
arXiv Detail & Related papers (2024-11-30T14:32:48Z) - Towards Scalable Automated Alignment of LLMs: A Survey [54.820256625544225]
This paper systematically reviews the recently emerging methods of automated alignment.
We categorize existing automated alignment methods into 4 major categories based on the sources of alignment signals.
We discuss the essential factors that make automated alignment technologies feasible and effective from the fundamental role of alignment.
arXiv Detail & Related papers (2024-06-03T12:10:26Z) - The Buffer Mechanism for Multi-Step Information Reasoning in Language Models [52.77133661679439]
Investigating internal reasoning mechanisms of large language models can help us design better model architectures and training strategies.
In this study, we constructed a symbolic dataset to investigate the mechanisms by which Transformer models employ vertical thinking strategy.
We proposed a random matrix-based algorithm to enhance the model's reasoning ability, resulting in a 75% reduction in the training time required for the GPT-2 model.
arXiv Detail & Related papers (2024-05-24T07:41:26Z) - AutoTRIZ: Artificial Ideation with TRIZ and Large Language Models [2.7624021966289605]
Theory of Inventive Problem Solving is widely applied for systematic innovation.
The complexity of TRIZ resources and concepts, coupled with its reliance on users' knowledge, experience, and reasoning capabilities, limits its practicality.
This paper proposes AutoTRIZ, an artificial ideation tool that uses LLMs to automate and enhance the TRIZ methodology.
arXiv Detail & Related papers (2024-03-13T02:53:36Z) - Explainable Automated Machine Learning for Credit Decisions: Enhancing
Human Artificial Intelligence Collaboration in Financial Engineering [0.0]
This paper explores the integration of Explainable Automated Machine Learning (AutoML) in the realm of financial engineering.
The focus is on how AutoML can streamline the development of robust machine learning models for credit scoring.
The findings underscore the potential of explainable AutoML in improving the transparency and accountability of AI-driven financial decisions.
arXiv Detail & Related papers (2024-02-06T08:47:16Z) - Machine Learning Insides OptVerse AI Solver: Design Principles and
Applications [74.67495900436728]
We present a comprehensive study on the integration of machine learning (ML) techniques into Huawei Cloud's OptVerse AI solver.
We showcase our methods for generating complex SAT and MILP instances utilizing generative models that mirror multifaceted structures of real-world problem.
We detail the incorporation of state-of-the-art parameter tuning algorithms which markedly elevate solver performance.
arXiv Detail & Related papers (2024-01-11T15:02:15Z) - Pessimism meets VCG: Learning Dynamic Mechanism Design via Offline
Reinforcement Learning [114.36124979578896]
We design a dynamic mechanism using offline reinforcement learning algorithms.
Our algorithm is based on the pessimism principle and only requires a mild assumption on the coverage of the offline data set.
arXiv Detail & Related papers (2022-05-05T05:44:26Z) - Learning Dynamic Mechanisms in Unknown Environments: A Reinforcement Learning Approach [123.55983746427572]
We propose novel learning algorithms to recover the dynamic Vickrey-Clarke-Grove (VCG) mechanism over multiple rounds of interaction.
A key contribution of our approach is incorporating reward-free online Reinforcement Learning (RL) to aid exploration over a rich policy space.
arXiv Detail & Related papers (2022-02-25T16:17:23Z) - AutonoML: Towards an Integrated Framework for Autonomous Machine
Learning [9.356870107137095]
Review seeks to motivate a more expansive perspective on what constitutes an automated/autonomous ML system.
In doing so, we survey developments in the following research areas.
We develop a conceptual framework throughout the review, augmented by each topic, to illustrate one possible way of fusing high-level mechanisms into an autonomous ML system.
arXiv Detail & Related papers (2020-12-23T11:01:10Z) - Technology Readiness Levels for AI & ML [79.22051549519989]
Development of machine learning systems can be executed easily with modern tools, but the process is typically rushed and means-to-an-end.
Engineering systems follow well-defined processes and testing standards to streamline development for high-quality, reliable results.
We propose a proven systems engineering approach for machine learning development and deployment.
arXiv Detail & Related papers (2020-06-21T17:14:34Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.