Observable and computable entanglement in time
- URL: http://arxiv.org/abs/2502.12240v1
- Date: Mon, 17 Feb 2025 19:00:01 GMT
- Title: Observable and computable entanglement in time
- Authors: Alexey Milekhin, Zofia Adamska, John Preskill,
- Abstract summary: We propose a novel family of entanglement measures for time-separated subsystems.<n>For relativistic quantum field theories our definition agrees with the analytic continuation from spacelike to timelike separated regions.<n>We perform explicit computations for an Ising spin chain, free fermions, (1+1)-dimensional conformal field theories and holographic theories.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We propose a novel family of entanglement measures for time-separated subsystems. Our definitions are applicable to any quantum system, continuous or discrete. To illustrate their utility, we derive upper and lower bounds on time-separated correlation functions, akin to the bound on spatially separated correlators in terms of the mutual information. In certain cases our bounds are tight. For relativistic quantum field theories our definition agrees with the analytic continuation from spacelike to timelike separated regions. We provide relevant measurement protocols and execute them on the IBM quantum device ibm_sherbrooke for a simple qubit system. Also we perform explicit computations for an Ising spin chain, free fermions, (1+1)-dimensional conformal field theories and holographic theories. Finally we explain how the proposed entanglement in time provides a microscopic definition for the recently introduced timelike pseudoentropy.
Related papers
- Temporal Entanglement from Holographic Entanglement Entropy [44.99833362998488]
We propose a systematic prescription to characterize temporal entanglement in quantum field theory.<n>For holographic quantum field theories, our prescription amounts to an analytic continuation of all co-dimension-two bulk extremal surfaces.<n>We show that it leads to results with self-consistent physical properties of temporal entanglement.
arXiv Detail & Related papers (2025-07-23T18:14:21Z) - Looking for Carroll particles in two time spacetime [55.2480439325792]
Carroll particles with a non-vanishing value of energy are described in the framework of two time physics.
We construct the quantum theory of such a particle using an unexpected correspondence between our parametrization and that obtained by Bars for the hydrogen atom in 1999.
arXiv Detail & Related papers (2023-10-29T15:51:41Z) - A new indeterminacy-based quantum theory [0.0]
I propose a novel interpretation of quantum theory, which I will call Environmental Determinacy-based (EnDQT)
Unlike theories such as spontaneous collapse theories, no modifications of the fundamental equations of quantum theory are required to establish when determinate values arise.
EnDQT may provide payoffs to other areas of physics and their foundations, such as cosmology.
arXiv Detail & Related papers (2023-10-06T04:05:38Z) - Entanglement entropy in conformal quantum mechanics [68.8204255655161]
We consider sets of states in conformal quantum mechanics associated to generators of time evolution whose orbits cover different regions of the time domain.
States labelled by a continuous global time variable define the two-point correlation functions of the theory seen as a one-dimensional conformal field theory.
arXiv Detail & Related papers (2023-06-21T14:21:23Z) - Fermionic anyons: entanglement and quantum computation from a resource-theoretic perspective [39.58317527488534]
We develop a framework to characterize the separability of a specific type of one-dimensional quasiparticle known as a fermionic anyon.
We map this notion of fermionic-anyon separability to the free resources of matchgate circuits.
We also identify how entanglement between two qubits encoded in a dual-rail manner, as standard for matchgate circuits, corresponds to the notion of entanglement between fermionic anyons.
arXiv Detail & Related papers (2023-06-01T15:25:19Z) - Overlapping qubits from non-isometric maps and de Sitter tensor networks [41.94295877935867]
We show that processes in local effective theories can be spoofed with a quantum system with fewer degrees of freedom.
We highlight how approximate overlapping qubits are conceptually connected to Hilbert space dimension verification, degree-of-freedom counting in black holes and holography.
arXiv Detail & Related papers (2023-04-05T18:08:30Z) - Quantum Speed Limit for Change of Basis [55.500409696028626]
We extend the notion of quantum speed limits to collections of quantum states.
For two-qubit systems, we show that the fastest transformation implements two Hadamards and a swap of the qubits simultaneously.
For qutrit systems the evolution time depends on the particular type of the unbiased basis.
arXiv Detail & Related papers (2022-12-23T14:10:13Z) - Neural-Network Quantum States for Periodic Systems in Continuous Space [66.03977113919439]
We introduce a family of neural quantum states for the simulation of strongly interacting systems in the presence of periodicity.
For one-dimensional systems we find very precise estimations of the ground-state energies and the radial distribution functions of the particles.
In two dimensions we obtain good estimations of the ground-state energies, comparable to results obtained from more conventional methods.
arXiv Detail & Related papers (2021-12-22T15:27:30Z) - Persistent homology of quantum entanglement [0.0]
We study the structure of entanglement entropy using persistent homology.
The inverse quantum mutual information between pairs of sites is used as a distance metric to form a filtered simplicial complex.
We also discuss the promising future applications of this modern computational approach, including its connection to the question of how spacetime could emerge from entanglement.
arXiv Detail & Related papers (2021-10-19T19:23:39Z) - Quantum Correlations in Space-Time: Foundations and Applications [2.7050061584406495]
Correlations, as a measure of relationship between two quantities, do not distinguish space and time in classical probability theory.
quantum correlations in space are well-studied but temporal correlations are not well understood.
The thesis investigates quantum correlations in space-time, by treating temporal correlations equally in form of spatial correlations.
arXiv Detail & Related papers (2021-01-21T16:12:28Z) - Time-optimal quantum transformations with bounded bandwidth [0.0]
We derive sharp lower bounds, also known as quantum speed limits, for the time it takes to transform a quantum system into a state.
In a final section, we use the quantum speed limits to obtain upper bounds on the power with which energy can be extracted from quantum batteries.
arXiv Detail & Related papers (2020-11-24T08:42:08Z) - Quantum Kolmogorov-Sinai entropy and Pesin relation [0.0]
A quantum Kolmogorov-Sinai entropy is defined as the entropy production per unit time resulting from coupling the system to a weak, auxiliary bath.
We show a quantum (Pesin) relation between this entropy and the sum of positive eigenvalues of a matrix describing phase-space expansion.
arXiv Detail & Related papers (2020-10-12T23:08:35Z) - Functorial evolution of quantum fields [0.0]
We show how familiar notions from Relativity and quantum causality can be recovered in a purely order-theoretic way.
We formulate theory-independent notions of fields over causal orders in a compositional, functorial way.
We introduce notions of symmetry and cellular automata, which we show to subsume existing definitions of Quantum Cellular Automata.
arXiv Detail & Related papers (2020-03-30T08:39:22Z) - Entropic Uncertainty Relations and the Quantum-to-Classical transition [77.34726150561087]
We aim to shed some light on the quantum-to-classical transition as seen through the analysis of uncertainty relations.
We employ entropic uncertainty relations to show that it is only by the inclusion of imprecision in our model of macroscopic measurements that we can prepare a system with two simultaneously well-defined quantities.
arXiv Detail & Related papers (2020-03-04T14:01:17Z) - Projection evolution and quantum spacetime [68.8204255655161]
We discuss the problem of time in quantum mechanics.
An idea of construction of a quantum spacetime as a special set of the allowed states is presented.
An example of a structureless quantum Minkowski-like spacetime is also considered.
arXiv Detail & Related papers (2019-10-24T14:54:11Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.