Entanglement theory with limited computational resources
- URL: http://arxiv.org/abs/2502.12284v1
- Date: Mon, 17 Feb 2025 19:43:59 GMT
- Title: Entanglement theory with limited computational resources
- Authors: Lorenzo Leone, Jacopo Rizzo, Jens Eisert, Sofiene Jerbi,
- Abstract summary: We show that computational entanglement measures diverge significantly from information-theoretic counterparts.
While the von Neumann entropy captures information-theoretic rates for pure-state transformations, we show that under computational constraints, the min-entropy governs optimal entanglement distillation.
Our results establish a stark, maximal separation of $tildeOmega(n)$ vs. $o(1)$ between computational and information-theoretic entanglement measures.
- Score: 0.29998889086656577
- License:
- Abstract: The precise quantification of the ultimate efficiency in manipulating quantum resources lies at the core of quantum information theory. However, purely information-theoretic measures fail to capture the actual computational complexity involved in performing certain tasks. In this work, we rigorously address this issue within the realm of entanglement theory, a cornerstone of quantum information science. We consider two key figures of merit: the computational distillable entanglement and the computational entanglement cost, quantifying the optimal rate of entangled bits (ebits) that can be extracted from or used to dilute many identical copies of $n$-qubit bipartite pure states, using computationally efficient local operations and classical communication (LOCC). We demonstrate that computational entanglement measures diverge significantly from their information-theoretic counterparts. While the von Neumann entropy captures information-theoretic rates for pure-state transformations, we show that under computational constraints, the min-entropy instead governs optimal entanglement distillation. Meanwhile, efficient entanglement dilution incurs in a major cost, requiring maximal $(\tilde{\Omega}(n))$ ebits even for nearly unentangled states. Surprisingly, in the worst-case scenario, even if an efficient description of the state exists and is fully known, one gains no advantage over state-agnostic protocols. Our results establish a stark, maximal separation of $\tilde{\Omega}(n)$ vs. $o(1)$ between computational and information-theoretic entanglement measures. Finally, our findings yield new sample-complexity bounds for measuring and testing the von Neumann entropy, fundamental limits on efficient state compression, and efficient LOCC tomography protocols.
Related papers
- Hardware-efficient variational quantum algorithm in trapped-ion quantum computer [0.0]
We study a hardware-efficient variational quantum algorithm ansatz tailored for the trapped-ion quantum simulator, HEA-TI.
We leverage programmable single-qubit rotations and global spin-spin interactions among all ions, reducing the dependence on resource-intensive two-qubit gates in conventional gate-based methods.
arXiv Detail & Related papers (2024-07-03T14:02:20Z) - Computable entanglement cost [4.642647756403864]
We consider the problem of computing the entanglement cost of preparing noisy quantum states under quantum operations with positive partial transpose (PPT)
A previously claimed solution to this problem is shown to be incorrect. We construct instead an alternative solution in the form of two hierarchies of semi-definite programs that converge to the true value of the entanglement cost from above and from below.
Our main result establishes that this convergence happens exponentially fast, thus yielding an efficient algorithm that approximates the cost up to an additive error $varepsilon$ in time.
arXiv Detail & Related papers (2024-05-15T18:00:01Z) - Entanglement and coherence in Bernstein-Vazirani algorithm [58.720142291102135]
Bernstein-Vazirani algorithm allows one to determine a bit string encoded into an oracle.
We analyze in detail the quantum resources in the Bernstein-Vazirani algorithm.
We show that in the absence of entanglement, the performance of the algorithm is directly related to the amount of quantum coherence in the initial state.
arXiv Detail & Related papers (2022-05-26T20:32:36Z) - Improved Quantum Algorithms for Fidelity Estimation [77.34726150561087]
We develop new and efficient quantum algorithms for fidelity estimation with provable performance guarantees.
Our algorithms use advanced quantum linear algebra techniques, such as the quantum singular value transformation.
We prove that fidelity estimation to any non-trivial constant additive accuracy is hard in general.
arXiv Detail & Related papers (2022-03-30T02:02:16Z) - Efficient Bipartite Entanglement Detection Scheme with a Quantum
Adversarial Solver [89.80359585967642]
Proposal reformulates the bipartite entanglement detection as a two-player zero-sum game completed by parameterized quantum circuits.
We experimentally implement our protocol on a linear optical network and exhibit its effectiveness to accomplish the bipartite entanglement detection for 5-qubit quantum pure states and 2-qubit quantum mixed states.
arXiv Detail & Related papers (2022-03-15T09:46:45Z) - Quantum algorithms for estimating quantum entropies [6.211541620389987]
We propose quantum algorithms to estimate the von Neumann and quantum $alpha$-R'enyi entropies of an fundamental quantum state.
We also show how to efficiently construct the quantum entropy circuits for quantum entropy estimation using single copies of the input state.
arXiv Detail & Related papers (2022-03-04T15:44:24Z) - Thermodynamic optimization of quantum algorithms: On-the-go erasure of
qubit registers [1.5229257192293197]
"On-the-go erasure" of quantum registers that are no longer needed for a given algorithm.
Freezing up auxiliary qubits as they stop being useful would facilitate the parallelization of computations.
For the class of algorithms solving the Abelian hidden subgroup problem, we find optimal on-the-go erasure protocols.
arXiv Detail & Related papers (2021-12-08T16:47:16Z) - Realization of arbitrary doubly-controlled quantum phase gates [62.997667081978825]
We introduce a high-fidelity gate set inspired by a proposal for near-term quantum advantage in optimization problems.
By orchestrating coherent, multi-level control over three transmon qutrits, we synthesize a family of deterministic, continuous-angle quantum phase gates acting in the natural three-qubit computational basis.
arXiv Detail & Related papers (2021-08-03T17:49:09Z) - Efficient Verification of Anticoncentrated Quantum States [0.38073142980733]
I present a novel method for estimating the fidelity $F(mu,tau)$ between a preparable quantum state $mu$ and a classically specified target state $tau$.
I also present a more sophisticated version of the method, which uses any efficiently preparable and well-characterized quantum state as an importance sampler.
arXiv Detail & Related papers (2020-12-15T18:01:11Z) - Quantum Gram-Schmidt Processes and Their Application to Efficient State
Read-out for Quantum Algorithms [87.04438831673063]
We present an efficient read-out protocol that yields the classical vector form of the generated state.
Our protocol suits the case that the output state lies in the row space of the input matrix.
One of our technical tools is an efficient quantum algorithm for performing the Gram-Schmidt orthonormal procedure.
arXiv Detail & Related papers (2020-04-14T11:05:26Z) - Simulation of Thermal Relaxation in Spin Chemistry Systems on a Quantum
Computer Using Inherent Qubit Decoherence [53.20999552522241]
We seek to take advantage of qubit decoherence as a resource in simulating the behavior of real world quantum systems.
We present three methods for implementing the thermal relaxation.
We find excellent agreement between our results, experimental data, and the theoretical prediction.
arXiv Detail & Related papers (2020-01-03T11:48:11Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.