論文の概要: HopRAG: Multi-Hop Reasoning for Logic-Aware Retrieval-Augmented Generation
- arxiv url: http://arxiv.org/abs/2502.12442v1
- Date: Tue, 18 Feb 2025 02:24:42 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-02-19 14:07:38.664305
- Title: HopRAG: Multi-Hop Reasoning for Logic-Aware Retrieval-Augmented Generation
- Title(参考訳): HopRAG: 論理対応検索拡張ジェネレーションのためのマルチホップ推論
- Authors: Hao Liu, Zhengren Wang, Xi Chen, Zhiyu Li, Feiyu Xiong, Qinhan Yu, Wentao Zhang,
- Abstract要約: 論理的推論による検索を強化する新しいRAGフレームワークであるHopRAGを提案する。
インデックス作成中にHopRAGは、テキストチャンクを頂点とし、LLM生成した擬似クエリをエッジとして確立した論理接続をエッジとして、パスグラフを構築する。
検索中は、語彙的または意味論的に類似した通路から始まる、検索・推論・帰属機構を用いる。
実験では、HopRAGの優位性が示され、76.78%の回答精度、65.07%の検索F1スコアが従来の方法よりも向上した。
- 参考スコア(独自算出の注目度): 28.69822159828129
- License:
- Abstract: Retrieval-Augmented Generation (RAG) systems often struggle with imperfect retrieval, as traditional retrievers focus on lexical or semantic similarity rather than logical relevance. To address this, we propose HopRAG, a novel RAG framework that augments retrieval with logical reasoning through graph-structured knowledge exploration. During indexing, HopRAG constructs a passage graph, with text chunks as vertices and logical connections established via LLM-generated pseudo-queries as edges. During retrieval, it employs a retrieve-reason-prune mechanism: starting with lexically or semantically similar passages, the system explores multi-hop neighbors guided by pseudo-queries and LLM reasoning to identify truly relevant ones. Extensive experiments demonstrate HopRAG's superiority, achieving 76.78\% higher answer accuracy and 65.07\% improved retrieval F1 score compared to conventional methods. The repository is available at https://github.com/LIU-Hao-2002/HopRAG.
- Abstract(参考訳): Retrieval-Augmented Generation (RAG) システムは、論理的関連性よりも語彙的・意味的類似性に重点を置いているため、不完全検索に苦慮することが多い。
そこで我々は,グラフ構造化知識探索による論理的推論により検索を増強する新しいRAGフレームワークHopRAGを提案する。
インデックス作成中にHopRAGは、テキストチャンクを頂点とし、LLM生成した擬似クエリをエッジとして確立した論理接続をエッジとして、パスグラフを構築する。
語彙的または意味論的に類似した通路から始め、システムは擬似クエリとLLM推論によって導かれるマルチホップ隣人を探索し、真に関連のあるものを識別する。
大規模な実験では、HopRAGの優位性が示され、解答精度は76.78 %、検索F1のスコアは65.07 %向上した。
リポジトリはhttps://github.com/LIU-Hao-2002/HopRAGで公開されている。
関連論文リスト
- ArchRAG: Attributed Community-based Hierarchical Retrieval-Augmented Generation [16.204046295248546]
Retrieval-Augmented Generation (RAG) は、外部知識を大規模言語モデルに統合するのに有効であることが証明されている。
我々は、Attributed Community-based Hierarchical RAG (ArchRAG)と呼ばれる新しいグラフベースのRAGアプローチを導入する。
属性付きコミュニティのための新しい階層型インデックス構造を構築し,効果的なオンライン検索手法を開発した。
論文 参考訳(メタデータ) (2025-02-14T03:28:36Z) - Knowledge Graph-Guided Retrieval Augmented Generation [34.83235788116369]
本稿では,知識グラフを用いた検索検索生成フレームワークを提案する。
KG$2$RAGは、チャンク間の事実レベルの関係を提供し、得られた結果の多様性と一貫性を改善する。
論文 参考訳(メタデータ) (2025-02-08T02:14:31Z) - SiReRAG: Indexing Similar and Related Information for Multihop Reasoning [96.60045548116584]
SiReRAGは、類似情報と関連する情報の両方を明示的に考慮する新しいRAGインデックス方式である。
SiReRAGは、3つのマルチホップデータセットの最先端インデックス手法を一貫して上回る。
論文 参考訳(メタデータ) (2024-12-09T04:56:43Z) - Graph-constrained Reasoning: Faithful Reasoning on Knowledge Graphs with Large Language Models [83.28737898989694]
大規模言語モデル(LLM)は知識ギャップと幻覚のために忠実な推論に苦しむ。
グラフ制約推論(GCR)は、KGにおける構造的知識とLLMにおける非構造的推論を橋渡しする新しいフレームワークである。
GCRは最先端のパフォーマンスを達成し、追加のトレーニングをすることなく、見えないKGに対して強力なゼロショット一般化性を示す。
論文 参考訳(メタデータ) (2024-10-16T22:55:17Z) - Graph Neural Network Enhanced Retrieval for Question Answering of LLMs [19.24603296717601]
既存の検索方法は、参照文書を通路に分割し、それらを分離して扱う。
しかし、これらの節はしばしば相互に関連しており、例えば連続した節や同じキーワードを共有している節などである。
本稿では,グラフニューラルネットワーク(GNN)を利用した新しい検索手法GNN-Retを提案する。
論文 参考訳(メタデータ) (2024-06-03T17:07:46Z) - MultiHop-RAG: Benchmarking Retrieval-Augmented Generation for Multi-Hop
Queries [22.4349439498591]
Retrieval-augmented Generation (RAG)は、関連する知識を検索することで、大きな言語モデル(LLM)を拡張する。
既存のRAGシステムはマルチホップクエリに応答するには不十分であり、複数の証拠を検索して推論する必要がある。
我々は,知識ベース,多数のマルチホップクエリのコレクション,基礎的回答,関連する支持証拠からなる新しいデータセットであるMultiHop-RAGを開発した。
論文 参考訳(メタデータ) (2024-01-27T11:41:48Z) - PathFinder: Guided Search over Multi-Step Reasoning Paths [80.56102301441899]
木探索に基づく推論経路生成手法であるPathFinderを提案する。
動的デコードの統合により、多様な分岐とマルチホップ推論を強化する。
我々のモデルは、大きな分岐因子を持つビームサーチに類似した複雑さを反映して、よく、長く、目に見えない推論連鎖を一般化する。
論文 参考訳(メタデータ) (2023-12-08T17:05:47Z) - Self-RAG: Learning to Retrieve, Generate, and Critique through
Self-Reflection [74.51523859064802]
我々は、自己回帰検索拡張生成(Self-RAG)と呼ばれる新しいフレームワークを導入する。
自己RAGは、検索と自己回帰によってLMの品質と事実性を高める。
様々なタスクセットにおいて、最先端のLCMや検索強化モデルよりも大幅に優れています。
論文 参考訳(メタデータ) (2023-10-17T18:18:32Z) - Learning to Rank in Generative Retrieval [62.91492903161522]
生成的検索は、検索対象として関連する通路の識別子文字列を生成することを目的としている。
我々はLTRGRと呼ばれる生成検索のための学習 torankフレームワークを提案する。
このフレームワークは、現在の生成的検索システムを強化するために、追加の学習からランクまでのトレーニングフェーズのみを必要とする。
論文 参考訳(メタデータ) (2023-06-27T05:48:14Z) - UniKGQA: Unified Retrieval and Reasoning for Solving Multi-hop Question
Answering Over Knowledge Graph [89.98762327725112]
KGQA(Multi-hop Question Answering over Knowledge Graph)は、自然言語の質問で言及されているトピックエンティティから、複数のホップを持つ回答エンティティを見つけることを目的としている。
我々は、モデルアーキテクチャとパラメータ学習の両方において、検索と推論を統合することで、マルチホップKGQAタスクの新しいアプローチであるUniKGQAを提案する。
論文 参考訳(メタデータ) (2022-12-02T04:08:09Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。