論文の概要: Improving the Stability of GNN Force Field Models by Reducing Feature Correlation
- arxiv url: http://arxiv.org/abs/2502.12548v1
- Date: Tue, 18 Feb 2025 05:18:22 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-02-19 14:07:57.841842
- Title: Improving the Stability of GNN Force Field Models by Reducing Feature Correlation
- Title(参考訳): 特徴相関の低減によるGNN力場モデルの安定性向上
- Authors: Yujie Zeng, Wenlong He, Ihor Vasyltsov, Jiaxin Wei, Ying Zhang, Lin Chen, Yuehua Dai,
- Abstract要約: MDシミュレーションの安定性を高めるため,GNNFFモデルの特徴相関に基づく手法を提案する。
本稿では,GNNFFモデルの安定性を,特に計算オーバーヘッドが3%未満の分布外データにおいて著しく向上することを示す。
- 参考スコア(独自算出の注目度): 9.546348080237747
- License:
- Abstract: Recently, Graph Neural Network based Force Field (GNNFF) models are widely used in Molecular Dynamics (MD) simulation, which is one of the most cost-effective means in semiconductor material research. However, even such models provide high accuracy in energy and force Mean Absolute Error (MAE) over trained (in-distribution) datasets, they often become unstable during long-time MD simulation when used for out-of-distribution datasets. In this paper, we propose a feature correlation based method for GNNFF models to enhance the stability of MD simulation. We reveal the negative relationship between feature correlation and the stability of GNNFF models, and design a loss function with a dynamic loss coefficient scheduler to reduce edge feature correlation that can be applied in general GNNFF training. We also propose an empirical metric to evaluate the stability in MD simulation. Experiments show our method can significantly improve stability for GNNFF models especially in out-of-distribution data with less than 3% computational overhead. For example, we can ensure the stable MD simulation time from 0.03ps to 10ps for Allegro model.
- Abstract(参考訳): 近年,GNNFF(Graph Neural Network Based Force Field)モデルが分子動力学(MD)シミュレーションで広く利用されている。
しかし、そのようなモデルでさえエネルギーの精度が高く、トレーニングされた(流通中の)データセットよりも平均絶対誤差(MAE)を強制する。
本稿では,MDシミュレーションの安定性を高めるために,GNNFFモデルの特徴相関に基づく手法を提案する。
我々は,GNNFFモデルの特性相関と安定性の負の関係を明らかにするとともに,一般的なGNNFFトレーニングに適用可能なエッジ特徴相関を低減するために,動的損失係数スケジューラを用いた損失関数を設計する。
また,MDシミュレーションの安定性を評価するための実験指標を提案する。
実験により,GNNFFモデルの安定性は,特に計算オーバーヘッドが3%未満の分布外データにおいて有意に向上することが示された。
例えば、アレッグロモデルでは、安定したMDシミュレーション時間を 0.03ps から 10ps に保証することができる。
関連論文リスト
- Muti-Fidelity Prediction and Uncertainty Quantification with Laplace Neural Operators for Parametric Partial Differential Equations [6.03891813540831]
Laplace Neural Operators (LNOs) は、科学機械学習において有望なアプローチとして登場した。
低忠実度ベースモデルと並列線形/非線形HF補正と動的相互重み付けを組み合わせた多忠実Laplace Neural Operator (MF-LNOs)を提案する。
これにより、LFデータセットとHFデータセットの相関を利用して、興味のある量の正確な推測を行うことができる。
論文 参考訳(メタデータ) (2025-02-01T20:38:50Z) - Trajectory Flow Matching with Applications to Clinical Time Series Modeling [77.58277281319253]
Trajectory Flow Matching (TFM) は、シミュレーションのない方法でニューラルSDEを訓練し、ダイナミックスを通してバックプロパゲーションをバイパスする。
絶対的性能と不確実性予測の観点から,3つの臨床時系列データセットの性能向上を実証した。
論文 参考訳(メタデータ) (2024-10-28T15:54:50Z) - A Dynamic Approach to Stock Price Prediction: Comparing RNN and Mixture of Experts Models Across Different Volatility Profiles [0.0]
MoEフレームワークは揮発性株のRNNと安定株の線形モデルを組み合わせて、ゲーティングネットワークを介して各モデルの重量を動的に調整する。
その結果,MoE法は様々な変動性プロファイルの予測精度を著しく向上させることがわかった。
MoEモデルの適応性は個々のモデルよりも優れており、Mean Squared Error(MSE)やMean Absolute Error(MAE)などのエラーを減らすことができる。
論文 参考訳(メタデータ) (2024-10-04T14:36:21Z) - Can AI be enabled to dynamical downscaling? A Latent Diffusion Model to mimic km-scale COSMO5.0\_CLM9 simulations [0.0]
ダウンスケーリング技術は、地球システムモデリングにおけるディープラーニング(DL)の最も顕著な応用の1つである。
本研究では,イタリア上空のERA5データを2kmまでダウンスケールするために,LDM(Latent Diffusion Model)を適用した。
我々のゴールは、最近の生成モデリングの進歩により、DLが数値力学モデルに匹敵する結果をもたらすことを実証することである。
論文 参考訳(メタデータ) (2024-06-19T15:20:28Z) - Bridging the Sim-to-Real Gap with Bayesian Inference [53.61496586090384]
データからロボットダイナミクスを学習するためのSIM-FSVGDを提案する。
我々は、ニューラルネットワークモデルのトレーニングを規則化するために、低忠実度物理プリエンスを使用します。
高性能RCレースカーシステムにおけるSIM-to-realギャップのブリッジ化におけるSIM-FSVGDの有効性を実証する。
論文 参考訳(メタデータ) (2024-03-25T11:29:32Z) - The Risk of Federated Learning to Skew Fine-Tuning Features and
Underperform Out-of-Distribution Robustness [50.52507648690234]
フェデレートされた学習は、微調整された特徴をスキイングし、モデルの堅牢性を損なうリスクがある。
3つのロバスト性指標を導入し、多様なロバストデータセットで実験を行う。
提案手法は,パラメータ効率のよい微調整手法を含む多種多様なシナリオにまたがるロバスト性を著しく向上させる。
論文 参考訳(メタデータ) (2024-01-25T09:18:51Z) - Towards Long-Term predictions of Turbulence using Neural Operators [68.8204255655161]
機械学習を用いて乱流シミュレーションのための低次/サロゲートモデルを開発することを目的としている。
異なるモデル構造が解析され、U-NET構造は標準FNOよりも精度と安定性が良い。
論文 参考訳(メタデータ) (2023-07-25T14:09:53Z) - Multi-fidelity Hierarchical Neural Processes [79.0284780825048]
多要素代理モデリングは、異なるシミュレーション出力を融合させることで計算コストを削減する。
本稿では,多階層型階層型ニューラルネットワーク(MF-HNP)を提案する。
疫学および気候モデリングタスクにおけるMF-HNPの評価を行い、精度と不確実性評価の観点から競合性能を達成した。
論文 参考訳(メタデータ) (2022-06-10T04:54:13Z) - Mixed Effects Neural ODE: A Variational Approximation for Analyzing the
Dynamics of Panel Data [50.23363975709122]
パネルデータ解析に(固定・ランダムな)混合効果を取り入れたME-NODEという確率モデルを提案する。
我々は、Wong-Zakai定理によって提供されるSDEの滑らかな近似を用いて、我々のモデルを導出できることを示す。
次に、ME-NODEのためのエビデンスに基づく下界を導出し、(効率的な)トレーニングアルゴリズムを開発する。
論文 参考訳(メタデータ) (2022-02-18T22:41:51Z) - A data-driven peridynamic continuum model for upscaling molecular
dynamics [3.1196544696082613]
分子動力学データから最適線形ペリダイナミックソリッドモデルを抽出する学習フレームワークを提案する。
我々は,符号変化の影響関数を持つ離散化LPSモデルに対して,十分な適切な正当性条件を提供する。
このフレームワークは、結果のモデルが数学的に適切であり、物理的に一貫したものであり、トレーニング中に使用するものと異なる設定によく当てはまることを保証します。
論文 参考訳(メタデータ) (2021-08-04T07:07:47Z) - Model-based Policy Optimization with Unsupervised Model Adaptation [37.09948645461043]
本研究では,不正確なモデル推定による実データとシミュレーションデータのギャップを埋めて,より良いポリシ最適化を実現する方法について検討する。
本稿では,教師なしモデル適応を導入したモデルベース強化学習フレームワークAMPOを提案する。
提案手法は,一連の連続制御ベンチマークタスクにおけるサンプル効率の観点から,最先端の性能を実現する。
論文 参考訳(メタデータ) (2020-10-19T14:19:42Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。