CausalMan: A physics-based simulator for large-scale causality
- URL: http://arxiv.org/abs/2502.12707v1
- Date: Tue, 18 Feb 2025 10:20:22 GMT
- Title: CausalMan: A physics-based simulator for large-scale causality
- Authors: Nicholas Tagliapietra, Juergen Luettin, Lavdim Halilaj, Moritz Willig, Tim Pychynski, Kristian Kersting,
- Abstract summary: We present the CausalMan simulator, modeled after a real-world production line.<n>As a contribution, we will release the CausalMan large-scale simulator.
- Score: 16.93123199555512
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: A comprehensive understanding of causality is critical for navigating and operating within today's complex real-world systems. The absence of realistic causal models with known data generating processes complicates fair benchmarking. In this paper, we present the CausalMan simulator, modeled after a real-world production line. The simulator features a diverse range of linear and non-linear mechanisms and challenging-to-predict behaviors, such as discrete mode changes. We demonstrate the inadequacy of many state-of-the-art approaches and analyze the significant differences in their performance and tractability, both in terms of runtime and memory complexity. As a contribution, we will release the CausalMan large-scale simulator. We present two derived datasets, and perform an extensive evaluation of both.
Related papers
- Temporal Causal-based Simulation for Realistic Time-series Generation [1.49201581313345]
Causal Discovery plays a pivotal role in revealing relationships among observed variables, particularly in the temporal setup.<n>Generation techniques depending on simplified assumptions on causal structure, effects and time, limit the quality and diversity of the simulated data.<n>We introduce Temporal Causal-based Simulation (TCS), a robust framework for generating realistic time-series data and their associated temporal causal graphs.
arXiv Detail & Related papers (2025-06-02T10:59:48Z) - A simulation-heuristics dual-process model for intuitive physics [28.707537312978502]
Using a pouring-marble task, our human study revealed two distinct error patterns when predicting pouring angles, differentiated by simulation time.
We propose a dual-process framework, Simulation-Heuristics Model (SHM), where intuitive physics employs simulation for short-time simulation but switches to simulation when simulation becomes costly.
The SHM aligns more precisely with human behavior and demonstrates consistent predictive performance across diverse scenarios, advancing our understanding of the adaptive nature of intuitive physical reasoning.
arXiv Detail & Related papers (2025-04-13T12:34:02Z) - A Theoretical Perspective: How to Prevent Model Collapse in Self-consuming Training Loops [55.07063067759609]
High-quality data is essential for training large generative models, yet the vast reservoir of real data available online has become nearly depleted.
Models increasingly generate their own data for further training, forming Self-consuming Training Loops (STLs)
Some models degrade or even collapse, while others successfully avoid these failures, leaving a significant gap in theoretical understanding.
arXiv Detail & Related papers (2025-02-26T06:18:13Z) - GauSim: Registering Elastic Objects into Digital World by Gaussian Simulator [55.02281855589641]
GauSim is a novel neural network-based simulator designed to capture the dynamic behaviors of real-world elastic objects represented through Gaussian kernels.<n>We leverage continuum mechanics, modeling each kernel as a continuous piece of matter to account for realistic deformations without idealized assumptions.<n>GauSim incorporates explicit physics constraints, such as mass and momentum conservation, ensuring interpretable results and robust, physically plausible simulations.
arXiv Detail & Related papers (2024-12-23T18:58:17Z) - Physics-enhanced Neural Operator for Simulating Turbulent Transport [9.923888452768919]
This paper presents a physics-enhanced neural operator (PENO) that incorporates physical knowledge of partial differential equations (PDEs) to accurately model flow dynamics.
The proposed method is evaluated through its performance on two distinct sets of 3D turbulent flow data.
arXiv Detail & Related papers (2024-05-31T20:05:17Z) - Waymax: An Accelerated, Data-Driven Simulator for Large-Scale Autonomous
Driving Research [76.93956925360638]
Waymax is a new data-driven simulator for autonomous driving in multi-agent scenes.
It runs entirely on hardware accelerators such as TPUs/GPUs and supports in-graph simulation for training.
We benchmark a suite of popular imitation and reinforcement learning algorithms with ablation studies on different design decisions.
arXiv Detail & Related papers (2023-10-12T20:49:15Z) - From Model-Based to Data-Driven Simulation: Challenges and Trends in
Autonomous Driving [26.397030011439163]
We provide an overview of challenges with regard to different aspects and types of simulation.
We cover aspects around perception-, behavior- and content-realism as well as general hurdles in the domain of simulation.
Among others, we observe a trend of data-driven, generative approaches and high-fidelity data synthesis to increasingly replace model-based simulation.
arXiv Detail & Related papers (2023-05-23T11:39:23Z) - Multi-fidelity Hierarchical Neural Processes [79.0284780825048]
Multi-fidelity surrogate modeling reduces the computational cost by fusing different simulation outputs.
We propose Multi-fidelity Hierarchical Neural Processes (MF-HNP), a unified neural latent variable model for multi-fidelity surrogate modeling.
We evaluate MF-HNP on epidemiology and climate modeling tasks, achieving competitive performance in terms of accuracy and uncertainty estimation.
arXiv Detail & Related papers (2022-06-10T04:54:13Z) - CausalSim: A Causal Framework for Unbiased Trace-Driven Simulation [25.620312665350028]
CausalSim is a causal framework for unbiased trace-driven simulation.
It learns a causal model of the system dynamics and latent factors capturing the underlying system conditions during trace collection.
It reduces errors by 53% and 61% on average compared to expert-designed and supervised learning baselines.
arXiv Detail & Related papers (2022-01-05T20:45:24Z) - DR2L: Surfacing Corner Cases to Robustify Autonomous Driving via Domain
Randomization Reinforcement Learning [4.040937987024427]
Domain Randomization(DR) is a methodology that can bridge this gap with little or no real-world data.
An adversarial model is put forward to robustify DeepRL-based autonomous vehicles trained in simulation.
arXiv Detail & Related papers (2021-07-25T09:15:46Z) - Exploring the potential of transfer learning for metamodels of
heterogeneous material deformation [0.0]
We show that transfer learning can be used to leverage both low-fidelity simulation data and simulation data.
We extend Mechanical MNIST, our open source benchmark dataset of heterogeneous material undergoing large deformation.
We show that transferring the knowledge stored in metamodels trained on these low-fidelity simulation results can vastly improve the performance of metamodels used to predict the results of high-fidelity simulations.
arXiv Detail & Related papers (2020-10-28T12:43:46Z) - Multiplicative noise and heavy tails in stochastic optimization [62.993432503309485]
empirical optimization is central to modern machine learning, but its role in its success is still unclear.
We show that it commonly arises in parameters of discrete multiplicative noise due to variance.
A detailed analysis is conducted in which we describe on key factors, including recent step size, and data, all exhibit similar results on state-of-the-art neural network models.
arXiv Detail & Related papers (2020-06-11T09:58:01Z) - From Simulation to Real World Maneuver Execution using Deep
Reinforcement Learning [69.23334811890919]
Deep Reinforcement Learning has proved to be able to solve many control tasks in different fields, but the behavior of these systems is not always as expected when deployed in real-world scenarios.
This is mainly due to the lack of domain adaptation between simulated and real-world data together with the absence of distinction between train and test datasets.
We present a system based on multiple environments in which agents are trained simultaneously, evaluating the behavior of the model in different scenarios.
arXiv Detail & Related papers (2020-05-13T14:22:20Z) - A Critical View of the Structural Causal Model [89.43277111586258]
We show that one can identify the cause and the effect without considering their interaction at all.
We propose a new adversarial training method that mimics the disentangled structure of the causal model.
Our multidimensional method outperforms the literature methods on both synthetic and real world datasets.
arXiv Detail & Related papers (2020-02-23T22:52:28Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.