論文の概要: 3D Shape-to-Image Brownian Bridge Diffusion for Brain MRI Synthesis from Cortical Surfaces
- arxiv url: http://arxiv.org/abs/2502.12742v1
- Date: Tue, 18 Feb 2025 10:59:04 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-02-19 14:06:59.353479
- Title: 3D Shape-to-Image Brownian Bridge Diffusion for Brain MRI Synthesis from Cortical Surfaces
- Title(参考訳): 皮質表面からの脳MRI合成のための3次元形状と画像のブラウン橋拡散
- Authors: Fabian Bongratz, Yitong Li, Sama Elbaroudy, Christian Wachinger,
- Abstract要約: Cor2Voxは、連続した皮質形状を合成脳MRIに翻訳する最初の拡散モデルに基づく方法である。
本研究では, 従来のボクセル法と比較して, 復元された構造物の幾何的精度が大幅に向上したことを示す。
また, 亜ボクセルレベルの皮質萎縮をシミュレートするためのアプローチの有用性も強調した。
- 参考スコア(独自算出の注目度): 8.604681353022665
- License:
- Abstract: Despite recent advances in medical image generation, existing methods struggle to produce anatomically plausible 3D structures. In synthetic brain magnetic resonance images (MRIs), characteristic fissures are often missing, and reconstructed cortical surfaces appear scattered rather than densely convoluted. To address this issue, we introduce Cor2Vox, the first diffusion model-based method that translates continuous cortical shape priors to synthetic brain MRIs. To achieve this, we leverage a Brownian bridge process which allows for direct structured mapping between shape contours and medical images. Specifically, we adapt the concept of the Brownian bridge diffusion model to 3D and extend it to embrace various complementary shape representations. Our experiments demonstrate significant improvements in the geometric accuracy of reconstructed structures compared to previous voxel-based approaches. Moreover, Cor2Vox excels in image quality and diversity, yielding high variation in non-target structures like the skull. Finally, we highlight the capability of our approach to simulate cortical atrophy at the sub-voxel level. Our code is available at https://github.com/ai-med/Cor2Vox.
- Abstract(参考訳): 近年の医用画像生成の進歩にもかかわらず、既存の手法は解剖学的に妥当な3D構造を作り出すのに苦労している。
合成脳磁気共鳴画像(MRI)では、特徴的な裂け目がしばしば欠落し、再建された皮質表面は密度が高くなるよりも散らばっているように見える。
この問題に対処するため、我々はCor2Voxを紹介した。Cor2Voxは、連続した皮質形状を合成脳MRIに翻訳する最初の拡散モデルに基づく手法である。
これを実現するために、形状輪郭と医用画像の直接構造マッピングを可能にするブラウン橋のプロセスを利用する。
具体的には、ブラウン橋拡散モデルの概念を3次元に適応させ、様々な相補的な形状表現を受け入れるように拡張する。
本実験は, 従来のボクセル法と比較して, 復元された構造物の幾何的精度が著しく向上したことを示す。
さらに、Cor2Voxは画像の品質と多様性に優れており、頭蓋骨のような非ターゲット構造に高いばらつきをもたらす。
最後に, サブボクセルレベルでの皮質萎縮をシミュレートするためのアプローチの有用性を強調した。
私たちのコードはhttps://github.com/ai-med/Cor2Vox.comで公開されています。
関連論文リスト
- Intraoperative Registration by Cross-Modal Inverse Neural Rendering [61.687068931599846]
クロスモーダル逆ニューラルレンダリングによる神経外科手術における術中3D/2Dレジストレーションのための新しいアプローチを提案する。
本手法では,暗黙の神経表現を2つの構成要素に分離し,術前および術中における解剖学的構造について検討した。
臨床症例の振り返りデータを用いて本法の有効性を検証し,現在の登録基準を満たした状態での最先端の検査成績を示した。
論文 参考訳(メタデータ) (2024-09-18T13:40:59Z) - Volumetric Reconstruction Resolves Off-Resonance Artifacts in Static and
Dynamic PROPELLER MRI [76.60362295758596]
磁気共鳴イメージング(MRI)におけるオフ共鳴アーティファクトは、画像ボリューム内のスピンの実際の共鳴周波数が空間情報を符号化するのに使用される期待周波数と異なる場合に発生する視覚歪みである。
本稿では,2次元MRI再構成問題を3次元に引き上げ,このオフ共鳴をモデル化するための「スペクトル」次元を導入することで,これらのアーチファクトを解決することを提案する。
論文 参考訳(メタデータ) (2023-11-22T05:44:51Z) - EndoSurf: Neural Surface Reconstruction of Deformable Tissues with
Stereo Endoscope Videos [72.59573904930419]
ステレオ内視鏡ビデオから軟組織を再構成することは、多くの医療応用にとって必須の前提条件である。
従来の手法では、3Dシーンの表現が不十分なため、高品質な幾何学や外観を作り出すのに苦労していた。
本稿では,RGBD配列から変形面を効果的に表現する神経場に基づく新しい手法であるEndoSurfを提案する。
論文 参考訳(メタデータ) (2023-07-21T02:28:20Z) - Make-A-Volume: Leveraging Latent Diffusion Models for Cross-Modality 3D
Brain MRI Synthesis [35.45013834475523]
クロスモダリティ医療画像合成は重要なトピックであり、医療画像分野における多くの応用を促進する可能性がある。
現在の医療画像合成法のほとんどは、生成的敵ネットワークに依存しており、悪名高いモード崩壊と不安定な訓練に悩まされている。
本稿では,2次元バックボーンを利用した医療データ合成のための新しいパラダイムを提案し,拡散型フレームワークであるMake-A-Volumeを提案する。
論文 参考訳(メタデータ) (2023-07-19T16:01:09Z) - Passive superresolution imaging of incoherent objects [63.942632088208505]
手法は、Hermite-Gaussianモードとその重ね合わせのオーバーコンプリートベースで、画像平面内のフィールドの空間モード成分を測定することで構成される。
ディープニューラルネットワークは、これらの測定からオブジェクトを再構築するために使用される。
論文 参考訳(メタデータ) (2023-04-19T15:53:09Z) - CryoFormer: Continuous Heterogeneous Cryo-EM Reconstruction using
Transformer-based Neural Representations [49.49939711956354]
核電子顕微鏡(cryo-EM)は、タンパク質やその他の生体分子の3D構造を高分解能で再構築することを可能にする。
3次元構造の連続的な動きをノイズやランダムに配向した2次元Creo-EM画像から再構成することは依然として困難である。
我々はCryoFormerを提案する。CryoFormerは連続したヘテロジニアスCryo-EM再構成のための新しいアプローチである。
論文 参考訳(メタデータ) (2023-03-28T18:59:17Z) - Joint Reconstruction and Parcellation of Cortical Surfaces [3.9198548406564604]
脳MRI画像からの大脳皮質表面の再構成は、アルツハイマー病(AD)のような神経変性疾患における脳形態解析と皮質シンニングの検出に有用である
本研究では,グラフ分類分岐に基づく2つの選択肢と,新しい汎用的な3次元再構成損失に基づく2つの選択肢を提案し,テンプレート・デフォーメーション・アルゴリズムを改良する。
我々はDiceスコア90.2(グラフ分類分岐)と90.4(復元損失90.4)の高精度なパーセレーションと最先端のサーフェスを同時に達成した。
論文 参考訳(メタデータ) (2022-09-19T11:45:39Z) - Vox2Cortex: Fast Explicit Reconstruction of Cortical Surfaces from 3D
MRI Scans with Geometric Deep Neural Networks [3.364554138758565]
深層学習に基づくアルゴリズムであるVox2Cortexを提案する。
我々は3つの脳MRIデータセットの広範な実験で、我々のメッシュは現場の最先端の方法で再構築されたものと同じくらい正確であることを示した。
論文 参考訳(メタデータ) (2022-03-17T17:06:00Z) - Robust joint registration of multiple stains and MRI for multimodal 3D
histology reconstruction: Application to the Allen human brain atlas [5.303976649864034]
複数の組織染色を再現する空間的変形の確率論的モデルを提案する。
本手法は, アウトリーヤの存在下においても複数のコントラストを正確かつ堅牢に登録できることを示した。
また, 組織学とMRIにおいて最も多く用いられている2つのアトラスのギャップを埋めるMNI空間の対応も提供する。
論文 参考訳(メタデータ) (2021-04-30T09:57:33Z) - Hierarchical Amortized Training for Memory-efficient High Resolution 3D
GAN [52.851990439671475]
本稿では,高解像度な3D画像を生成することができる新しいエンドツーエンドGANアーキテクチャを提案する。
トレーニングと推論の異なる構成を使用することで、この目標を達成する。
3次元胸郭CTと脳MRIの実験により、我々のアプローチは画像生成における最先端技術より優れていることが示された。
論文 参考訳(メタデータ) (2020-08-05T02:33:04Z) - End-To-End Convolutional Neural Network for 3D Reconstruction of Knee
Bones From Bi-Planar X-Ray Images [6.645111950779666]
両平面X線画像から直接膝骨を3次元再構成するためのエンドツーエンド畳み込みニューラルネットワーク(CNN)を提案する。
論文 参考訳(メタデータ) (2020-04-02T08:37:11Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。